Step |
Hyp |
Ref |
Expression |
1 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 𝐿 ) ↔ 𝐿 ∈ ℕ ) |
2 |
|
ne0i |
⊢ ( 0 ∈ ( 0 ..^ 𝐿 ) → ( 0 ..^ 𝐿 ) ≠ ∅ ) |
3 |
1 2
|
sylbir |
⊢ ( 𝐿 ∈ ℕ → ( 0 ..^ 𝐿 ) ≠ ∅ ) |
4 |
3
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 0 ..^ 𝐿 ) ≠ ∅ ) |
5 |
|
simp1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → 𝑊 ∈ Word 𝑉 ) |
6 |
|
nnnn0 |
⊢ ( 𝐿 ∈ ℕ → 𝐿 ∈ ℕ0 ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ℕ0 ) |
8 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
10 |
|
simp3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) |
11 |
|
elfz2nn0 |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
12 |
7 9 10 11
|
syl3anbrc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
13 |
|
pfxf |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝐿 ) : ( 0 ..^ 𝐿 ) ⟶ 𝑉 ) |
14 |
5 12 13
|
syl2anc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 prefix 𝐿 ) : ( 0 ..^ 𝐿 ) ⟶ 𝑉 ) |
15 |
|
f0dom0 |
⊢ ( ( 𝑊 prefix 𝐿 ) : ( 0 ..^ 𝐿 ) ⟶ 𝑉 → ( ( 0 ..^ 𝐿 ) = ∅ ↔ ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
16 |
15
|
bicomd |
⊢ ( ( 𝑊 prefix 𝐿 ) : ( 0 ..^ 𝐿 ) ⟶ 𝑉 → ( ( 𝑊 prefix 𝐿 ) = ∅ ↔ ( 0 ..^ 𝐿 ) = ∅ ) ) |
17 |
14 16
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 prefix 𝐿 ) = ∅ ↔ ( 0 ..^ 𝐿 ) = ∅ ) ) |
18 |
17
|
necon3bid |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 prefix 𝐿 ) ≠ ∅ ↔ ( 0 ..^ 𝐿 ) ≠ ∅ ) ) |
19 |
4 18
|
mpbird |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 prefix 𝐿 ) ≠ ∅ ) |