Step |
Hyp |
Ref |
Expression |
1 |
|
pfxval |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑊 prefix 𝐿 ) = ( 𝑊 substr 〈 0 , 𝐿 〉 ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( 𝑊 prefix 𝐿 ) = ( 𝑊 substr 〈 0 , 𝐿 〉 ) ) |
3 |
|
simp1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) < 𝐿 ) → 𝑊 ∈ Word 𝑉 ) |
4 |
|
0zd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) < 𝐿 ) → 0 ∈ ℤ ) |
5 |
|
nn0z |
⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℤ ) |
6 |
5
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) < 𝐿 ) → 𝐿 ∈ ℤ ) |
7 |
3 4 6
|
3jca |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( 𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
8 |
|
3mix3 |
⊢ ( ( ♯ ‘ 𝑊 ) < 𝐿 → ( 0 < 0 ∨ 𝐿 ≤ 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( 0 < 0 ∨ 𝐿 ≤ 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ) |
10 |
|
swrdnd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 0 < 0 ∨ 𝐿 ≤ 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( 𝑊 substr 〈 0 , 𝐿 〉 ) = ∅ ) ) |
11 |
7 9 10
|
sylc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( 𝑊 substr 〈 0 , 𝐿 〉 ) = ∅ ) |
12 |
2 11
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( 𝑊 prefix 𝐿 ) = ∅ ) |