| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-nel | ⊢ ( 𝐿  ∉  ( 0 ... ( ♯ ‘ 𝑊 ) )  ↔  ¬  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 2 | 1 | a1i | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝐿  ∉  ( 0 ... ( ♯ ‘ 𝑊 ) )  ↔  ¬  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 3 |  | elfz2nn0 | ⊢ ( 𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ↔  ( 𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ↔  ( 𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 5 | 4 | notbid | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ¬  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ↔  ¬  ( 𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 6 |  | 3ianor | ⊢ ( ¬  ( 𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  ↔  ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ¬  ( 𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  ↔  ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 8 | 2 5 7 | 3bitrd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝐿  ∉  ( 0 ... ( ♯ ‘ 𝑊 ) )  ↔  ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 9 |  | 3orrot | ⊢ ( ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  ↔  ( ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  ∨  ¬  𝐿  ∈  ℕ0 ) ) | 
						
							| 10 |  | 3orass | ⊢ ( ( ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  ∨  ¬  𝐿  ∈  ℕ0 )  ↔  ( ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ( ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  ∨  ¬  𝐿  ∈  ℕ0 ) ) ) | 
						
							| 11 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 12 | 11 | pm2.24d | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) | 
						
							| 13 | 12 | com12 | ⊢ ( ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝑊  ∈  V  ∧  𝐿  ∈  ℕ0 )  →  𝐿  ∈  ℕ0 ) | 
						
							| 15 |  | pfxnndmnd | ⊢ ( ¬  ( 𝑊  ∈  V  ∧  𝐿  ∈  ℕ0 )  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) | 
						
							| 16 | 14 15 | nsyl5 | ⊢ ( ¬  𝐿  ∈  ℕ0  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) | 
						
							| 17 | 16 | a1d | ⊢ ( ¬  𝐿  ∈  ℕ0  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) | 
						
							| 18 |  | notnotb | ⊢ ( 𝐿  ∈  ℕ0  ↔  ¬  ¬  𝐿  ∈  ℕ0 ) | 
						
							| 19 | 11 | nn0red | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℝ ) | 
						
							| 20 |  | nn0re | ⊢ ( 𝐿  ∈  ℕ0  →  𝐿  ∈  ℝ ) | 
						
							| 21 |  | ltnle | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℝ  ∧  𝐿  ∈  ℝ )  →  ( ( ♯ ‘ 𝑊 )  <  𝐿  ↔  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 22 | 19 20 21 | syl2an | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑊 )  <  𝐿  ↔  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 23 |  | pfxnd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  <  𝐿 )  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) | 
						
							| 24 | 23 | 3expia | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑊 )  <  𝐿  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) | 
						
							| 25 | 22 24 | sylbird | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0 )  →  ( ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) | 
						
							| 26 | 25 | expcom | ⊢ ( 𝐿  ∈  ℕ0  →  ( 𝑊  ∈  Word  𝑉  →  ( ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) ) | 
						
							| 27 | 26 | com23 | ⊢ ( 𝐿  ∈  ℕ0  →  ( ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) ) | 
						
							| 28 | 18 27 | sylbir | ⊢ ( ¬  ¬  𝐿  ∈  ℕ0  →  ( ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) ) | 
						
							| 29 | 28 | imp | ⊢ ( ( ¬  ¬  𝐿  ∈  ℕ0  ∧  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) | 
						
							| 30 | 17 29 | jaoi3 | ⊢ ( ( ¬  𝐿  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) | 
						
							| 31 | 30 | orcoms | ⊢ ( ( ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  ∨  ¬  𝐿  ∈  ℕ0 )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) | 
						
							| 32 | 13 31 | jaoi | ⊢ ( ( ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ( ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  ∨  ¬  𝐿  ∈  ℕ0 ) )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) | 
						
							| 33 | 10 32 | sylbi | ⊢ ( ( ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  ∨  ¬  𝐿  ∈  ℕ0 )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) | 
						
							| 34 | 9 33 | sylbi | ⊢ ( ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) | 
						
							| 35 | 34 | com12 | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) | 
						
							| 36 | 8 35 | sylbid | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝐿  ∉  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) | 
						
							| 37 | 36 | imp | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∉  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) |