Step |
Hyp |
Ref |
Expression |
1 |
|
df-nel |
⊢ ( 𝐿 ∉ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ¬ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
2 |
1
|
a1i |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝐿 ∉ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ¬ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
3 |
|
elfz2nn0 |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
4 |
3
|
a1i |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
5 |
4
|
notbid |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ¬ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ¬ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
6 |
|
3ianor |
⊢ ( ¬ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ↔ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
7 |
6
|
a1i |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ¬ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ↔ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
8 |
2 5 7
|
3bitrd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝐿 ∉ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
9 |
|
3orrot |
⊢ ( ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ↔ ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) ) |
10 |
|
3orass |
⊢ ( ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) ↔ ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) ) ) |
11 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
12 |
11
|
pm2.24d |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
13 |
12
|
com12 |
⊢ ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
14 |
|
simpr |
⊢ ( ( 𝑊 ∈ V ∧ 𝐿 ∈ ℕ0 ) → 𝐿 ∈ ℕ0 ) |
15 |
|
pfxnndmnd |
⊢ ( ¬ ( 𝑊 ∈ V ∧ 𝐿 ∈ ℕ0 ) → ( 𝑊 prefix 𝐿 ) = ∅ ) |
16 |
14 15
|
nsyl5 |
⊢ ( ¬ 𝐿 ∈ ℕ0 → ( 𝑊 prefix 𝐿 ) = ∅ ) |
17 |
16
|
a1d |
⊢ ( ¬ 𝐿 ∈ ℕ0 → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
18 |
|
notnotb |
⊢ ( 𝐿 ∈ ℕ0 ↔ ¬ ¬ 𝐿 ∈ ℕ0 ) |
19 |
11
|
nn0red |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
20 |
|
nn0re |
⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℝ ) |
21 |
|
ltnle |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( ( ♯ ‘ 𝑊 ) < 𝐿 ↔ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
22 |
19 20 21
|
syl2an |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑊 ) < 𝐿 ↔ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
23 |
|
pfxnd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( 𝑊 prefix 𝐿 ) = ∅ ) |
24 |
23
|
3expia |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑊 ) < 𝐿 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
25 |
22 24
|
sylbird |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
26 |
25
|
expcom |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝑊 ∈ Word 𝑉 → ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) → ( 𝑊 prefix 𝐿 ) = ∅ ) ) ) |
27 |
26
|
com23 |
⊢ ( 𝐿 ∈ ℕ0 → ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) ) |
28 |
18 27
|
sylbir |
⊢ ( ¬ ¬ 𝐿 ∈ ℕ0 → ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) ) |
29 |
28
|
imp |
⊢ ( ( ¬ ¬ 𝐿 ∈ ℕ0 ∧ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
30 |
17 29
|
jaoi3 |
⊢ ( ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
31 |
30
|
orcoms |
⊢ ( ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
32 |
13 31
|
jaoi |
⊢ ( ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
33 |
10 32
|
sylbi |
⊢ ( ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
34 |
9 33
|
sylbi |
⊢ ( ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
35 |
34
|
com12 |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
36 |
8 35
|
sylbid |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝐿 ∉ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
37 |
36
|
imp |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∉ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝐿 ) = ∅ ) |