| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-nel | 
							⊢ ( 𝐿  ∉  ( 0 ... ( ♯ ‘ 𝑊 ) )  ↔  ¬  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							a1i | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝐿  ∉  ( 0 ... ( ♯ ‘ 𝑊 ) )  ↔  ¬  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							elfz2nn0 | 
							⊢ ( 𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ↔  ( 𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							a1i | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ↔  ( 𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							notbid | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ( ¬  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ↔  ¬  ( 𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							3ianor | 
							⊢ ( ¬  ( 𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  ↔  ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ( ¬  ( 𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  ↔  ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) ) )  | 
						
						
							| 8 | 
							
								2 5 7
							 | 
							3bitrd | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝐿  ∉  ( 0 ... ( ♯ ‘ 𝑊 ) )  ↔  ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							3orrot | 
							⊢ ( ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  ↔  ( ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  ∨  ¬  𝐿  ∈  ℕ0 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							3orass | 
							⊢ ( ( ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  ∨  ¬  𝐿  ∈  ℕ0 )  ↔  ( ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ( ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  ∨  ¬  𝐿  ∈  ℕ0 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							lencl | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 )  | 
						
						
							| 12 | 
							
								11
							 | 
							pm2.24d | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ( ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							com12 | 
							⊢ ( ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑊  ∈  V  ∧  𝐿  ∈  ℕ0 )  →  𝐿  ∈  ℕ0 )  | 
						
						
							| 15 | 
							
								
							 | 
							pfxnndmnd | 
							⊢ ( ¬  ( 𝑊  ∈  V  ∧  𝐿  ∈  ℕ0 )  →  ( 𝑊  prefix  𝐿 )  =  ∅ )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							nsyl5 | 
							⊢ ( ¬  𝐿  ∈  ℕ0  →  ( 𝑊  prefix  𝐿 )  =  ∅ )  | 
						
						
							| 17 | 
							
								16
							 | 
							a1d | 
							⊢ ( ¬  𝐿  ∈  ℕ0  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) )  | 
						
						
							| 18 | 
							
								
							 | 
							notnotb | 
							⊢ ( 𝐿  ∈  ℕ0  ↔  ¬  ¬  𝐿  ∈  ℕ0 )  | 
						
						
							| 19 | 
							
								11
							 | 
							nn0red | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℝ )  | 
						
						
							| 20 | 
							
								
							 | 
							nn0re | 
							⊢ ( 𝐿  ∈  ℕ0  →  𝐿  ∈  ℝ )  | 
						
						
							| 21 | 
							
								
							 | 
							ltnle | 
							⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℝ  ∧  𝐿  ∈  ℝ )  →  ( ( ♯ ‘ 𝑊 )  <  𝐿  ↔  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 22 | 
							
								19 20 21
							 | 
							syl2an | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑊 )  <  𝐿  ↔  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							pfxnd | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  <  𝐿 )  →  ( 𝑊  prefix  𝐿 )  =  ∅ )  | 
						
						
							| 24 | 
							
								23
							 | 
							3expia | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑊 )  <  𝐿  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) )  | 
						
						
							| 25 | 
							
								22 24
							 | 
							sylbird | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0 )  →  ( ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							expcom | 
							⊢ ( 𝐿  ∈  ℕ0  →  ( 𝑊  ∈  Word  𝑉  →  ( ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							com23 | 
							⊢ ( 𝐿  ∈  ℕ0  →  ( ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) )  | 
						
						
							| 28 | 
							
								18 27
							 | 
							sylbir | 
							⊢ ( ¬  ¬  𝐿  ∈  ℕ0  →  ( ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							imp | 
							⊢ ( ( ¬  ¬  𝐿  ∈  ℕ0  ∧  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) )  | 
						
						
							| 30 | 
							
								17 29
							 | 
							jaoi3 | 
							⊢ ( ( ¬  𝐿  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							orcoms | 
							⊢ ( ( ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  ∨  ¬  𝐿  ∈  ℕ0 )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) )  | 
						
						
							| 32 | 
							
								13 31
							 | 
							jaoi | 
							⊢ ( ( ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ( ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  ∨  ¬  𝐿  ∈  ℕ0 ) )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) )  | 
						
						
							| 33 | 
							
								10 32
							 | 
							sylbi | 
							⊢ ( ( ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 )  ∨  ¬  𝐿  ∈  ℕ0 )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) )  | 
						
						
							| 34 | 
							
								9 33
							 | 
							sylbi | 
							⊢ ( ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							com12 | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) )  | 
						
						
							| 36 | 
							
								8 35
							 | 
							sylbid | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝐿  ∉  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							imp | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∉  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  prefix  𝐿 )  =  ∅ )  |