Step |
Hyp |
Ref |
Expression |
1 |
|
elfznn0 |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ℕ0 ) |
2 |
1
|
anim2i |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) |
4 |
|
pfxval |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 prefix 𝑁 ) = ( 𝑊 substr 〈 0 , 𝑁 〉 ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( 𝑊 prefix 𝑁 ) = ( 𝑊 substr 〈 0 , 𝑁 〉 ) ) |
6 |
5
|
oveq1d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑊 prefix 𝑁 ) prefix 𝐿 ) = ( ( 𝑊 substr 〈 0 , 𝑁 〉 ) prefix 𝐿 ) ) |
7 |
|
simp1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → 𝑊 ∈ Word 𝑉 ) |
8 |
|
simp2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
9 |
|
0elfz |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) |
10 |
1 9
|
syl |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 0 ∈ ( 0 ... 𝑁 ) ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → 0 ∈ ( 0 ... 𝑁 ) ) |
12 |
7 8 11
|
3jca |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 0 ∈ ( 0 ... 𝑁 ) ) ) |
13 |
1
|
nn0cnd |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ℂ ) |
14 |
13
|
subid1d |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝑁 − 0 ) = 𝑁 ) |
15 |
14
|
eqcomd |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 = ( 𝑁 − 0 ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → 𝑁 = ( 𝑁 − 0 ) ) |
17 |
16
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 0 ... 𝑁 ) = ( 0 ... ( 𝑁 − 0 ) ) ) |
18 |
17
|
eleq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝐿 ∈ ( 0 ... 𝑁 ) ↔ 𝐿 ∈ ( 0 ... ( 𝑁 − 0 ) ) ) ) |
19 |
18
|
biimp3a |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → 𝐿 ∈ ( 0 ... ( 𝑁 − 0 ) ) ) |
20 |
|
pfxswrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 0 ∈ ( 0 ... 𝑁 ) ) → ( 𝐿 ∈ ( 0 ... ( 𝑁 − 0 ) ) → ( ( 𝑊 substr 〈 0 , 𝑁 〉 ) prefix 𝐿 ) = ( 𝑊 substr 〈 0 , ( 0 + 𝐿 ) 〉 ) ) ) |
21 |
12 19 20
|
sylc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑊 substr 〈 0 , 𝑁 〉 ) prefix 𝐿 ) = ( 𝑊 substr 〈 0 , ( 0 + 𝐿 ) 〉 ) ) |
22 |
|
elfznn0 |
⊢ ( 𝐿 ∈ ( 0 ... 𝑁 ) → 𝐿 ∈ ℕ0 ) |
23 |
22
|
nn0cnd |
⊢ ( 𝐿 ∈ ( 0 ... 𝑁 ) → 𝐿 ∈ ℂ ) |
24 |
23
|
addid2d |
⊢ ( 𝐿 ∈ ( 0 ... 𝑁 ) → ( 0 + 𝐿 ) = 𝐿 ) |
25 |
24
|
opeq2d |
⊢ ( 𝐿 ∈ ( 0 ... 𝑁 ) → 〈 0 , ( 0 + 𝐿 ) 〉 = 〈 0 , 𝐿 〉 ) |
26 |
25
|
oveq2d |
⊢ ( 𝐿 ∈ ( 0 ... 𝑁 ) → ( 𝑊 substr 〈 0 , ( 0 + 𝐿 ) 〉 ) = ( 𝑊 substr 〈 0 , 𝐿 〉 ) ) |
27 |
26
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( 𝑊 substr 〈 0 , ( 0 + 𝐿 ) 〉 ) = ( 𝑊 substr 〈 0 , 𝐿 〉 ) ) |
28 |
22
|
anim2i |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ) ) |
29 |
28
|
3adant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ) ) |
30 |
|
pfxval |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑊 prefix 𝐿 ) = ( 𝑊 substr 〈 0 , 𝐿 〉 ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( 𝑊 prefix 𝐿 ) = ( 𝑊 substr 〈 0 , 𝐿 〉 ) ) |
32 |
27 31
|
eqtr4d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( 𝑊 substr 〈 0 , ( 0 + 𝐿 ) 〉 ) = ( 𝑊 prefix 𝐿 ) ) |
33 |
6 21 32
|
3eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑊 prefix 𝑁 ) prefix 𝐿 ) = ( 𝑊 prefix 𝐿 ) ) |