| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashgt0n0 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  →  𝑊  ≠  ∅ ) | 
						
							| 2 |  | lennncl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 3 | 1 2 | syldan | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 4 | 3 | 3adant2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 5 |  | fzo0end | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 7 |  | pfxsuffeqwrdeq | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  =  𝑈  ↔  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ( ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( 𝑈  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∧  ( 𝑊  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) ) | 
						
							| 8 | 6 7 | syld3an3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  =  𝑈  ↔  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ( ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( 𝑈  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∧  ( 𝑊  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) ) | 
						
							| 9 |  | hashneq0 | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 0  <  ( ♯ ‘ 𝑊 )  ↔  𝑊  ≠  ∅ ) ) | 
						
							| 10 | 9 | biimpd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 0  <  ( ♯ ‘ 𝑊 )  →  𝑊  ≠  ∅ ) ) | 
						
							| 11 | 10 | imdistani | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ ) ) | 
						
							| 12 | 11 | 3adant2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) )  →  ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ ) ) | 
						
							| 14 |  | swrdlsw | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  →  ( 𝑊  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 )  =  〈“ ( lastS ‘ 𝑊 ) ”〉 ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) )  →  ( 𝑊  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 )  =  〈“ ( lastS ‘ 𝑊 ) ”〉 ) | 
						
							| 16 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  →  ( 0  <  ( ♯ ‘ 𝑊 )  ↔  0  <  ( ♯ ‘ 𝑈 ) ) ) | 
						
							| 17 | 16 | 3anbi3d | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  ↔  ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑈 ) ) ) ) | 
						
							| 18 |  | hashneq0 | ⊢ ( 𝑈  ∈  Word  𝑉  →  ( 0  <  ( ♯ ‘ 𝑈 )  ↔  𝑈  ≠  ∅ ) ) | 
						
							| 19 | 18 | biimpd | ⊢ ( 𝑈  ∈  Word  𝑉  →  ( 0  <  ( ♯ ‘ 𝑈 )  →  𝑈  ≠  ∅ ) ) | 
						
							| 20 | 19 | imdistani | ⊢ ( ( 𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑈 ) )  →  ( 𝑈  ∈  Word  𝑉  ∧  𝑈  ≠  ∅ ) ) | 
						
							| 21 | 20 | 3adant1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑈 ) )  →  ( 𝑈  ∈  Word  𝑉  ∧  𝑈  ≠  ∅ ) ) | 
						
							| 22 |  | swrdlsw | ⊢ ( ( 𝑈  ∈  Word  𝑉  ∧  𝑈  ≠  ∅ )  →  ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑈 )  −  1 ) ,  ( ♯ ‘ 𝑈 ) 〉 )  =  〈“ ( lastS ‘ 𝑈 ) ”〉 ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑈 ) )  →  ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑈 )  −  1 ) ,  ( ♯ ‘ 𝑈 ) 〉 )  =  〈“ ( lastS ‘ 𝑈 ) ”〉 ) | 
						
							| 24 | 17 23 | biimtrdi | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  →  ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑈 )  −  1 ) ,  ( ♯ ‘ 𝑈 ) 〉 )  =  〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) | 
						
							| 25 | 24 | impcom | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) )  →  ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑈 )  −  1 ) ,  ( ♯ ‘ 𝑈 ) 〉 )  =  〈“ ( lastS ‘ 𝑈 ) ”〉 ) | 
						
							| 26 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( ( ♯ ‘ 𝑈 )  −  1 ) ) | 
						
							| 27 |  | id | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  →  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) ) | 
						
							| 28 | 26 27 | opeq12d | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  →  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉  =  〈 ( ( ♯ ‘ 𝑈 )  −  1 ) ,  ( ♯ ‘ 𝑈 ) 〉 ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  →  ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑈 )  −  1 ) ,  ( ♯ ‘ 𝑈 ) 〉 ) ) | 
						
							| 30 | 29 | eqeq1d | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  →  ( ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 )  =  〈“ ( lastS ‘ 𝑈 ) ”〉  ↔  ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑈 )  −  1 ) ,  ( ♯ ‘ 𝑈 ) 〉 )  =  〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) )  →  ( ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 )  =  〈“ ( lastS ‘ 𝑈 ) ”〉  ↔  ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑈 )  −  1 ) ,  ( ♯ ‘ 𝑈 ) 〉 )  =  〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) | 
						
							| 32 | 25 31 | mpbird | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) )  →  ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 )  =  〈“ ( lastS ‘ 𝑈 ) ”〉 ) | 
						
							| 33 | 15 32 | eqeq12d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) )  →  ( ( 𝑊  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ↔  〈“ ( lastS ‘ 𝑊 ) ”〉  =  〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) | 
						
							| 34 |  | fvexd | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) )  →  ( lastS ‘ 𝑊 )  ∈  V ) | 
						
							| 35 |  | fvex | ⊢ ( lastS ‘ 𝑈 )  ∈  V | 
						
							| 36 |  | s111 | ⊢ ( ( ( lastS ‘ 𝑊 )  ∈  V  ∧  ( lastS ‘ 𝑈 )  ∈  V )  →  ( 〈“ ( lastS ‘ 𝑊 ) ”〉  =  〈“ ( lastS ‘ 𝑈 ) ”〉  ↔  ( lastS ‘ 𝑊 )  =  ( lastS ‘ 𝑈 ) ) ) | 
						
							| 37 | 34 35 36 | sylancl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) )  →  ( 〈“ ( lastS ‘ 𝑊 ) ”〉  =  〈“ ( lastS ‘ 𝑈 ) ”〉  ↔  ( lastS ‘ 𝑊 )  =  ( lastS ‘ 𝑈 ) ) ) | 
						
							| 38 | 33 37 | bitrd | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) )  →  ( ( 𝑊  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ↔  ( lastS ‘ 𝑊 )  =  ( lastS ‘ 𝑈 ) ) ) | 
						
							| 39 | 38 | anbi2d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) )  →  ( ( ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( 𝑈  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∧  ( 𝑊  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 ) )  ↔  ( ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( 𝑈  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∧  ( lastS ‘ 𝑊 )  =  ( lastS ‘ 𝑈 ) ) ) ) | 
						
							| 40 | 39 | pm5.32da | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  →  ( ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ( ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( 𝑈  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∧  ( 𝑊  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑈  substr  〈 ( ( ♯ ‘ 𝑊 )  −  1 ) ,  ( ♯ ‘ 𝑊 ) 〉 ) ) )  ↔  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ( ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( 𝑈  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∧  ( lastS ‘ 𝑊 )  =  ( lastS ‘ 𝑈 ) ) ) ) ) | 
						
							| 41 | 8 40 | bitrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉  ∧  0  <  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  =  𝑈  ↔  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 )  ∧  ( ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( 𝑈  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∧  ( lastS ‘ 𝑊 )  =  ( lastS ‘ 𝑈 ) ) ) ) ) |