| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqwrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉 )  →  ( 𝑊  =  𝑆  ↔  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 ) ) ) ) | 
						
							| 2 | 1 | 3adant3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  =  𝑆  ↔  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 ) ) ) ) | 
						
							| 3 |  | elfzofz | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  𝐼  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 4 |  | fzosplit | ⊢ ( 𝐼  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( ( 0 ..^ 𝐼 )  ∪  ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( ( 0 ..^ 𝐼 )  ∪  ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( ( 0 ..^ 𝐼 )  ∪  ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( ( 0 ..^ 𝐼 )  ∪  ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 8 | 7 | raleqdv | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 )  ↔  ∀ 𝑖  ∈  ( ( 0 ..^ 𝐼 )  ∪  ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 ) ) ) | 
						
							| 9 |  | ralunb | ⊢ ( ∀ 𝑖  ∈  ( ( 0 ..^ 𝐼 )  ∪  ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ 𝐼 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 )  ∧  ∀ 𝑖  ∈  ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 ) ) ) | 
						
							| 10 | 8 9 | bitrdi | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ 𝐼 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 )  ∧  ∀ 𝑖  ∈  ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 ) ) ) ) | 
						
							| 11 |  | eqidd | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  𝐼  =  𝐼 ) | 
						
							| 12 |  | 3simpa | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉 ) ) | 
						
							| 14 |  | elfzonn0 | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  𝐼  ∈  ℕ0 ) | 
						
							| 15 | 14 14 | jca | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( 𝐼  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 ) ) | 
						
							| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝐼  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( 𝐼  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 ) ) | 
						
							| 18 |  | elfzo0le | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  𝐼  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 19 | 18 | 3ad2ant3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  𝐼  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  𝐼  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 21 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 )  →  ( 𝐼  ≤  ( ♯ ‘ 𝑊 )  ↔  𝐼  ≤  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( 𝐼  ≤  ( ♯ ‘ 𝑊 )  ↔  𝐼  ≤  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 23 | 20 22 | mpbid | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  𝐼  ≤  ( ♯ ‘ 𝑆 ) ) | 
						
							| 24 |  | pfxeq | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉 )  ∧  ( 𝐼  ∈  ℕ0  ∧  𝐼  ∈  ℕ0 )  ∧  ( 𝐼  ≤  ( ♯ ‘ 𝑊 )  ∧  𝐼  ≤  ( ♯ ‘ 𝑆 ) ) )  →  ( ( 𝑊  prefix  𝐼 )  =  ( 𝑆  prefix  𝐼 )  ↔  ( 𝐼  =  𝐼  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝐼 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 ) ) ) ) | 
						
							| 25 | 13 17 20 23 24 | syl112anc | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( ( 𝑊  prefix  𝐼 )  =  ( 𝑆  prefix  𝐼 )  ↔  ( 𝐼  =  𝐼  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝐼 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 ) ) ) ) | 
						
							| 26 | 11 25 | mpbirand | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( ( 𝑊  prefix  𝐼 )  =  ( 𝑆  prefix  𝐼 )  ↔  ∀ 𝑖  ∈  ( 0 ..^ 𝐼 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 ) ) ) | 
						
							| 27 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 28 | 27 14 | anim12ci | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) ) | 
						
							| 29 | 28 | 3adant2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) ) | 
						
							| 31 | 27 | nn0red | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℝ ) | 
						
							| 32 | 31 | leidd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( ♯ ‘ 𝑊 )  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 34 |  | eqle | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℝ  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( ♯ ‘ 𝑊 )  ≤  ( ♯ ‘ 𝑆 ) ) | 
						
							| 35 | 31 34 | sylan | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( ♯ ‘ 𝑊 )  ≤  ( ♯ ‘ 𝑆 ) ) | 
						
							| 36 | 33 35 | jca | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( ( ♯ ‘ 𝑊 )  ≤  ( ♯ ‘ 𝑊 )  ∧  ( ♯ ‘ 𝑊 )  ≤  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 37 | 36 | 3ad2antl1 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( ( ♯ ‘ 𝑊 )  ≤  ( ♯ ‘ 𝑊 )  ∧  ( ♯ ‘ 𝑊 )  ≤  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 38 |  | swrdspsleq | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉 )  ∧  ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ0 )  ∧  ( ( ♯ ‘ 𝑊 )  ≤  ( ♯ ‘ 𝑊 )  ∧  ( ♯ ‘ 𝑊 )  ≤  ( ♯ ‘ 𝑆 ) ) )  →  ( ( 𝑊  substr  〈 𝐼 ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑆  substr  〈 𝐼 ,  ( ♯ ‘ 𝑊 ) 〉 )  ↔  ∀ 𝑖  ∈  ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 ) ) ) | 
						
							| 39 | 13 30 37 38 | syl3anc | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( ( 𝑊  substr  〈 𝐼 ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑆  substr  〈 𝐼 ,  ( ♯ ‘ 𝑊 ) 〉 )  ↔  ∀ 𝑖  ∈  ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 ) ) ) | 
						
							| 40 | 26 39 | anbi12d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( ( ( 𝑊  prefix  𝐼 )  =  ( 𝑆  prefix  𝐼 )  ∧  ( 𝑊  substr  〈 𝐼 ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑆  substr  〈 𝐼 ,  ( ♯ ‘ 𝑊 ) 〉 ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ 𝐼 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 )  ∧  ∀ 𝑖  ∈  ( 𝐼 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 ) ) ) ) | 
						
							| 41 | 10 40 | bitr4d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 )  ↔  ( ( 𝑊  prefix  𝐼 )  =  ( 𝑆  prefix  𝐼 )  ∧  ( 𝑊  substr  〈 𝐼 ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑆  substr  〈 𝐼 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) | 
						
							| 42 | 41 | pm5.32da | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑖 ) )  ↔  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 )  ∧  ( ( 𝑊  prefix  𝐼 )  =  ( 𝑆  prefix  𝐼 )  ∧  ( 𝑊  substr  〈 𝐼 ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑆  substr  〈 𝐼 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) ) | 
						
							| 43 | 2 42 | bitrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  =  𝑆  ↔  ( ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑆 )  ∧  ( ( 𝑊  prefix  𝐼 )  =  ( 𝑆  prefix  𝐼 )  ∧  ( 𝑊  substr  〈 𝐼 ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑆  substr  〈 𝐼 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) ) |