Step |
Hyp |
Ref |
Expression |
1 |
|
ovexd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ∈ V ) |
2 |
|
elfznn0 |
⊢ ( 𝐿 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) → 𝐿 ∈ ℕ0 ) |
3 |
|
pfxval |
⊢ ( ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ∈ V ∧ 𝐿 ∈ ℕ0 ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) prefix 𝐿 ) = ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) substr 〈 0 , 𝐿 〉 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) ∧ 𝐿 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) prefix 𝐿 ) = ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) substr 〈 0 , 𝐿 〉 ) ) |
5 |
|
fznn0sub |
⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
6 |
5
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
7 |
|
0elfz |
⊢ ( ( 𝑁 − 𝑀 ) ∈ ℕ0 → 0 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 0 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ) |
9 |
8
|
anim1i |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) ∧ 𝐿 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ) → ( 0 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ∧ 𝐿 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ) ) |
10 |
|
swrdswrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 0 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ∧ 𝐿 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) substr 〈 0 , 𝐿 〉 ) = ( 𝑊 substr 〈 ( 𝑀 + 0 ) , ( 𝑀 + 𝐿 ) 〉 ) ) ) |
11 |
10
|
imp |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) ∧ ( 0 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ∧ 𝐿 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) substr 〈 0 , 𝐿 〉 ) = ( 𝑊 substr 〈 ( 𝑀 + 0 ) , ( 𝑀 + 𝐿 ) 〉 ) ) |
12 |
9 11
|
syldan |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) ∧ 𝐿 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) substr 〈 0 , 𝐿 〉 ) = ( 𝑊 substr 〈 ( 𝑀 + 0 ) , ( 𝑀 + 𝐿 ) 〉 ) ) |
13 |
|
elfznn0 |
⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑀 ∈ ℕ0 ) |
14 |
|
nn0cn |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ ) |
15 |
14
|
addid1d |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 0 ) = 𝑀 ) |
16 |
13 15
|
syl |
⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 𝑀 + 0 ) = 𝑀 ) |
17 |
16
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝑀 + 0 ) = 𝑀 ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) ∧ 𝐿 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ) → ( 𝑀 + 0 ) = 𝑀 ) |
19 |
18
|
opeq1d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) ∧ 𝐿 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ) → 〈 ( 𝑀 + 0 ) , ( 𝑀 + 𝐿 ) 〉 = 〈 𝑀 , ( 𝑀 + 𝐿 ) 〉 ) |
20 |
19
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) ∧ 𝐿 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ) → ( 𝑊 substr 〈 ( 𝑀 + 0 ) , ( 𝑀 + 𝐿 ) 〉 ) = ( 𝑊 substr 〈 𝑀 , ( 𝑀 + 𝐿 ) 〉 ) ) |
21 |
4 12 20
|
3eqtrd |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) ∧ 𝐿 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) prefix 𝐿 ) = ( 𝑊 substr 〈 𝑀 , ( 𝑀 + 𝐿 ) 〉 ) ) |
22 |
21
|
ex |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝐿 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) → ( ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) prefix 𝐿 ) = ( 𝑊 substr 〈 𝑀 , ( 𝑀 + 𝐿 ) 〉 ) ) ) |