| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wrdfin | ⊢ ( 𝑊  ∈  Word  𝑉  →  𝑊  ∈  Fin ) | 
						
							| 2 |  | 1elfz0hash | ⊢ ( ( 𝑊  ∈  Fin  ∧  𝑊  ≠  ∅ )  →  1  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  →  1  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 4 |  | lennncl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 5 |  | elfz1end | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ↔  ( ♯ ‘ 𝑊 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 6 | 4 5 | sylib | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  →  ( ♯ ‘ 𝑊 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 7 | 3 6 | jca | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  →  ( 1  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 8 | 7 | 3adant3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  ( 1  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 9 |  | fz0fzdiffz0 | ⊢ ( ( 1  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 11 |  | pfxfv | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  ( ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) ) ‘ 𝐼 )  =  ( 𝑊 ‘ 𝐼 ) ) | 
						
							| 12 | 10 11 | syld3an2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  ( ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) ) ‘ 𝐼 )  =  ( 𝑊 ‘ 𝐼 ) ) |