Step |
Hyp |
Ref |
Expression |
1 |
|
wrdfin |
⊢ ( 𝑊 ∈ Word 𝑉 → 𝑊 ∈ Fin ) |
2 |
|
1elfz0hash |
⊢ ( ( 𝑊 ∈ Fin ∧ 𝑊 ≠ ∅ ) → 1 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → 1 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
4 |
|
lennncl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
5 |
|
elfz1end |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ ( ♯ ‘ 𝑊 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
6 |
4 5
|
sylib |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
7 |
3 6
|
jca |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 1 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( 1 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) |
9 |
|
fz0fzdiffz0 |
⊢ ( ( 1 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
11 |
|
pfxfv |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) |
12 |
10 11
|
syld3an2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) |