| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 2 |  | wrdlenge2n0 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  𝑊  ≠  ∅ ) | 
						
							| 3 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  2  ∈  ℤ ) | 
						
							| 5 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 6 | 5 | nn0zd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  2  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 9 |  | eluz2 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℤ  ∧  2  ≤  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 10 | 4 7 8 9 | syl3anbrc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 11 |  | uz2m1nn | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 2 )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ℕ ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ℕ ) | 
						
							| 13 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ↔  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ℕ ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  0  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 15 |  | pfxtrcfv | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅  ∧  0  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  ( ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 16 | 1 2 14 15 | syl3anc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) |