Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
⊢ 2 ∈ ℤ |
2 |
1
|
a1i |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → 2 ∈ ℤ ) |
3 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
4 |
3
|
nn0zd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
5 |
4
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
6 |
|
simpr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → 2 ≤ ( ♯ ‘ 𝑊 ) ) |
7 |
|
eluz2 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) ) |
8 |
2 5 6 7
|
syl3anbrc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 2 ) ) |
9 |
|
ige2m1fz1 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 2 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
11 |
|
pfxfvlsw |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( lastS ‘ ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 1 ) ) ) |
12 |
10 11
|
syldan |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( lastS ‘ ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 1 ) ) ) |
13 |
3
|
nn0cnd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
14 |
|
sub1m1 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℂ → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − 2 ) ) |
15 |
13 14
|
syl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − 2 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − 2 ) ) |
17 |
16
|
fveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 1 ) ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ) |
18 |
12 17
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( lastS ‘ ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ) |