| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  2  ∈  ℤ ) | 
						
							| 3 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 4 | 3 | nn0zd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  2  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 7 |  | eluz2 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℤ  ∧  2  ≤  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 8 | 2 5 6 7 | syl3anbrc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 9 |  | ige2m1fz1 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 2 )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 11 |  | pfxfvlsw | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( lastS ‘ ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  =  ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  1 ) ) ) | 
						
							| 12 | 10 11 | syldan | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  ( lastS ‘ ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  =  ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  1 ) ) ) | 
						
							| 13 | 3 | nn0cnd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 14 |  | sub1m1 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℂ  →  ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  1 )  =  ( ( ♯ ‘ 𝑊 )  −  2 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  1 )  =  ( ( ♯ ‘ 𝑊 )  −  2 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  1 )  =  ( ( ♯ ‘ 𝑊 )  −  2 ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  1 ) )  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  2 ) ) ) | 
						
							| 18 | 12 17 | eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  ( lastS ‘ ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  2 ) ) ) |