Step |
Hyp |
Ref |
Expression |
1 |
|
df-pfx |
⊢ prefix = ( 𝑠 ∈ V , 𝑙 ∈ ℕ0 ↦ ( 𝑠 substr 〈 0 , 𝑙 〉 ) ) |
2 |
1
|
a1i |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ) → prefix = ( 𝑠 ∈ V , 𝑙 ∈ ℕ0 ↦ ( 𝑠 substr 〈 0 , 𝑙 〉 ) ) ) |
3 |
|
simpl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑙 = 𝐿 ) → 𝑠 = 𝑆 ) |
4 |
|
opeq2 |
⊢ ( 𝑙 = 𝐿 → 〈 0 , 𝑙 〉 = 〈 0 , 𝐿 〉 ) |
5 |
4
|
adantl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑙 = 𝐿 ) → 〈 0 , 𝑙 〉 = 〈 0 , 𝐿 〉 ) |
6 |
3 5
|
oveq12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑙 = 𝐿 ) → ( 𝑠 substr 〈 0 , 𝑙 〉 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑙 = 𝐿 ) ) → ( 𝑠 substr 〈 0 , 𝑙 〉 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |
8 |
|
elex |
⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ V ) |
9 |
8
|
adantr |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ) → 𝑆 ∈ V ) |
10 |
|
simpr |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ) → 𝐿 ∈ ℕ0 ) |
11 |
|
ovexd |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 substr 〈 0 , 𝐿 〉 ) ∈ V ) |
12 |
2 7 9 10 11
|
ovmpod |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 prefix 𝐿 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |