Step |
Hyp |
Ref |
Expression |
1 |
|
pfxval |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 prefix 𝐿 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |
2 |
|
simpr |
⊢ ( ( 𝑆 ∈ V ∧ 𝐿 ∈ ℕ0 ) → 𝐿 ∈ ℕ0 ) |
3 |
2
|
con3i |
⊢ ( ¬ 𝐿 ∈ ℕ0 → ¬ ( 𝑆 ∈ V ∧ 𝐿 ∈ ℕ0 ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ¬ 𝐿 ∈ ℕ0 ) → ¬ ( 𝑆 ∈ V ∧ 𝐿 ∈ ℕ0 ) ) |
5 |
|
pfxnndmnd |
⊢ ( ¬ ( 𝑆 ∈ V ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 prefix 𝐿 ) = ∅ ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ¬ 𝐿 ∈ ℕ0 ) → ( 𝑆 prefix 𝐿 ) = ∅ ) |
7 |
|
simpr |
⊢ ( ( 0 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → 𝐿 ∈ ℕ0 ) |
8 |
7
|
con3i |
⊢ ( ¬ 𝐿 ∈ ℕ0 → ¬ ( 0 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) |
9 |
|
swrdnnn0nd |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ¬ ( 0 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑆 substr 〈 0 , 𝐿 〉 ) = ∅ ) |
10 |
8 9
|
sylan2 |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ¬ 𝐿 ∈ ℕ0 ) → ( 𝑆 substr 〈 0 , 𝐿 〉 ) = ∅ ) |
11 |
6 10
|
eqtr4d |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ¬ 𝐿 ∈ ℕ0 ) → ( 𝑆 prefix 𝐿 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |
12 |
1 11
|
pm2.61dan |
⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 prefix 𝐿 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |