| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgp0.1 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 2 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ )  →  𝑃  ∈  ℕ ) | 
						
							| 4 | 3 | nncnd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ )  →  𝑃  ∈  ℂ ) | 
						
							| 5 | 4 | exp0d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ )  →  ( 𝑃 ↑ 0 )  =  1 ) | 
						
							| 6 | 1 | fvexi | ⊢  0   ∈  V | 
						
							| 7 |  | hashsng | ⊢ (  0   ∈  V  →  ( ♯ ‘ {  0  } )  =  1 ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ( ♯ ‘ {  0  } )  =  1 | 
						
							| 9 | 1 | 0subg | ⊢ ( 𝐺  ∈  Grp  →  {  0  }  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ )  →  {  0  }  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝐺  ↾s  {  0  } )  =  ( 𝐺  ↾s  {  0  } ) | 
						
							| 12 | 11 | subgbas | ⊢ ( {  0  }  ∈  ( SubGrp ‘ 𝐺 )  →  {  0  }  =  ( Base ‘ ( 𝐺  ↾s  {  0  } ) ) ) | 
						
							| 13 | 10 12 | syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ )  →  {  0  }  =  ( Base ‘ ( 𝐺  ↾s  {  0  } ) ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ )  →  ( ♯ ‘ {  0  } )  =  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  {  0  } ) ) ) ) | 
						
							| 15 | 8 14 | eqtr3id | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ )  →  1  =  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  {  0  } ) ) ) ) | 
						
							| 16 | 5 15 | eqtr2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ )  →  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  {  0  } ) ) )  =  ( 𝑃 ↑ 0 ) ) | 
						
							| 17 | 11 | subggrp | ⊢ ( {  0  }  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ↾s  {  0  } )  ∈  Grp ) | 
						
							| 18 | 10 17 | syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ )  →  ( 𝐺  ↾s  {  0  } )  ∈  Grp ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ )  →  𝑃  ∈  ℙ ) | 
						
							| 20 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 21 | 20 | a1i | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ )  →  0  ∈  ℕ0 ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ ( 𝐺  ↾s  {  0  } ) )  =  ( Base ‘ ( 𝐺  ↾s  {  0  } ) ) | 
						
							| 23 | 22 | pgpfi1 | ⊢ ( ( ( 𝐺  ↾s  {  0  } )  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  0  ∈  ℕ0 )  →  ( ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  {  0  } ) ) )  =  ( 𝑃 ↑ 0 )  →  𝑃  pGrp  ( 𝐺  ↾s  {  0  } ) ) ) | 
						
							| 24 | 18 19 21 23 | syl3anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ )  →  ( ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  {  0  } ) ) )  =  ( 𝑃 ↑ 0 )  →  𝑃  pGrp  ( 𝐺  ↾s  {  0  } ) ) ) | 
						
							| 25 | 16 24 | mpd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ )  →  𝑃  pGrp  ( 𝐺  ↾s  {  0  } ) ) |