| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pgpfac.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							pgpfac.c | 
							⊢ 𝐶  =  { 𝑟  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝐺  ↾s  𝑟 )  ∈  ( CycGrp  ∩  ran   pGrp  ) }  | 
						
						
							| 3 | 
							
								
							 | 
							pgpfac.g | 
							⊢ ( 𝜑  →  𝐺  ∈  Abel )  | 
						
						
							| 4 | 
							
								
							 | 
							pgpfac.p | 
							⊢ ( 𝜑  →  𝑃  pGrp  𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							pgpfac.f | 
							⊢ ( 𝜑  →  𝐵  ∈  Fin )  | 
						
						
							| 6 | 
							
								
							 | 
							ablgrp | 
							⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  Grp )  | 
						
						
							| 7 | 
							
								1
							 | 
							subgid | 
							⊢ ( 𝐺  ∈  Grp  →  𝐵  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 8 | 
							
								3 6 7
							 | 
							3syl | 
							⊢ ( 𝜑  →  𝐵  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑡  =  𝑢  →  ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  ↔  𝑢  ∈  ( SubGrp ‘ 𝐺 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( 𝑡  =  𝑢  →  ( ( 𝐺  DProd  𝑠 )  =  𝑡  ↔  ( 𝐺  DProd  𝑠 )  =  𝑢 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							anbi2d | 
							⊢ ( 𝑡  =  𝑢  →  ( ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 )  ↔  ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑢 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							rexbidv | 
							⊢ ( 𝑡  =  𝑢  →  ( ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 )  ↔  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑢 ) ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							imbi12d | 
							⊢ ( 𝑡  =  𝑢  →  ( ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) )  ↔  ( 𝑢  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑢 ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							imbi2d | 
							⊢ ( 𝑡  =  𝑢  →  ( ( 𝜑  →  ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) )  ↔  ( 𝜑  →  ( 𝑢  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑢 ) ) ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑡  =  𝐵  →  ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  ↔  𝐵  ∈  ( SubGrp ‘ 𝐺 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( 𝑡  =  𝐵  →  ( ( 𝐺  DProd  𝑠 )  =  𝑡  ↔  ( 𝐺  DProd  𝑠 )  =  𝐵 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							anbi2d | 
							⊢ ( 𝑡  =  𝐵  →  ( ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 )  ↔  ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝐵 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							rexbidv | 
							⊢ ( 𝑡  =  𝐵  →  ( ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 )  ↔  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝐵 ) ) )  | 
						
						
							| 19 | 
							
								15 18
							 | 
							imbi12d | 
							⊢ ( 𝑡  =  𝐵  →  ( ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) )  ↔  ( 𝐵  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝐵 ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							imbi2d | 
							⊢ ( 𝑡  =  𝐵  →  ( ( 𝜑  →  ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) )  ↔  ( 𝜑  →  ( 𝐵  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝐵 ) ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							bi2.04 | 
							⊢ ( ( 𝑡  ⊊  𝑢  →  ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) )  ↔  ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							imbi2i | 
							⊢ ( ( 𝜑  →  ( 𝑡  ⊊  𝑢  →  ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) ) )  ↔  ( 𝜑  →  ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							bi2.04 | 
							⊢ ( ( 𝑡  ⊊  𝑢  →  ( 𝜑  →  ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) ) )  ↔  ( 𝜑  →  ( 𝑡  ⊊  𝑢  →  ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							bi2.04 | 
							⊢ ( ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝜑  →  ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) ) )  ↔  ( 𝜑  →  ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) ) ) )  | 
						
						
							| 25 | 
							
								22 23 24
							 | 
							3bitr4i | 
							⊢ ( ( 𝑡  ⊊  𝑢  →  ( 𝜑  →  ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) ) )  ↔  ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝜑  →  ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							albii | 
							⊢ ( ∀ 𝑡 ( 𝑡  ⊊  𝑢  →  ( 𝜑  →  ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) ) )  ↔  ∀ 𝑡 ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝜑  →  ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑡  ∈  ( SubGrp ‘ 𝐺 ) ( 𝜑  →  ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) )  ↔  ∀ 𝑡 ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝜑  →  ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							r19.21v | 
							⊢ ( ∀ 𝑡  ∈  ( SubGrp ‘ 𝐺 ) ( 𝜑  →  ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) )  ↔  ( 𝜑  →  ∀ 𝑡  ∈  ( SubGrp ‘ 𝐺 ) ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) ) )  | 
						
						
							| 29 | 
							
								26 27 28
							 | 
							3bitr2i | 
							⊢ ( ∀ 𝑡 ( 𝑡  ⊊  𝑢  →  ( 𝜑  →  ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) ) )  ↔  ( 𝜑  →  ∀ 𝑡  ∈  ( SubGrp ‘ 𝐺 ) ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) ) )  | 
						
						
							| 30 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( ∀ 𝑡  ∈  ( SubGrp ‘ 𝐺 ) ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) )  ∧  𝑢  ∈  ( SubGrp ‘ 𝐺 ) ) )  →  𝐺  ∈  Abel )  | 
						
						
							| 31 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( ∀ 𝑡  ∈  ( SubGrp ‘ 𝐺 ) ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) )  ∧  𝑢  ∈  ( SubGrp ‘ 𝐺 ) ) )  →  𝑃  pGrp  𝐺 )  | 
						
						
							| 32 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( ∀ 𝑡  ∈  ( SubGrp ‘ 𝐺 ) ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) )  ∧  𝑢  ∈  ( SubGrp ‘ 𝐺 ) ) )  →  𝐵  ∈  Fin )  | 
						
						
							| 33 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( ∀ 𝑡  ∈  ( SubGrp ‘ 𝐺 ) ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) )  ∧  𝑢  ∈  ( SubGrp ‘ 𝐺 ) ) )  →  𝑢  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( ∀ 𝑡  ∈  ( SubGrp ‘ 𝐺 ) ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) )  ∧  𝑢  ∈  ( SubGrp ‘ 𝐺 ) ) )  →  ∀ 𝑡  ∈  ( SubGrp ‘ 𝐺 ) ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							psseq1 | 
							⊢ ( 𝑡  =  𝑥  →  ( 𝑡  ⊊  𝑢  ↔  𝑥  ⊊  𝑢 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( 𝑡  =  𝑥  →  ( ( 𝐺  DProd  𝑠 )  =  𝑡  ↔  ( 𝐺  DProd  𝑠 )  =  𝑥 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							anbi2d | 
							⊢ ( 𝑡  =  𝑥  →  ( ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 )  ↔  ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑥 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							rexbidv | 
							⊢ ( 𝑡  =  𝑥  →  ( ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 )  ↔  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑥 ) ) )  | 
						
						
							| 39 | 
							
								35 38
							 | 
							imbi12d | 
							⊢ ( 𝑡  =  𝑥  →  ( ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) )  ↔  ( 𝑥  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑥 ) ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑡  ∈  ( SubGrp ‘ 𝐺 ) ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) )  ↔  ∀ 𝑥  ∈  ( SubGrp ‘ 𝐺 ) ( 𝑥  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑥 ) ) )  | 
						
						
							| 41 | 
							
								34 40
							 | 
							sylib | 
							⊢ ( ( 𝜑  ∧  ( ∀ 𝑡  ∈  ( SubGrp ‘ 𝐺 ) ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) )  ∧  𝑢  ∈  ( SubGrp ‘ 𝐺 ) ) )  →  ∀ 𝑥  ∈  ( SubGrp ‘ 𝐺 ) ( 𝑥  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑥 ) ) )  | 
						
						
							| 42 | 
							
								1 2 30 31 32 33 41
							 | 
							pgpfaclem3 | 
							⊢ ( ( 𝜑  ∧  ( ∀ 𝑡  ∈  ( SubGrp ‘ 𝐺 ) ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) )  ∧  𝑢  ∈  ( SubGrp ‘ 𝐺 ) ) )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑢 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							exp32 | 
							⊢ ( 𝜑  →  ( ∀ 𝑡  ∈  ( SubGrp ‘ 𝐺 ) ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) )  →  ( 𝑢  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑢 ) ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							a1i | 
							⊢ ( 𝑢  ∈  Fin  →  ( 𝜑  →  ( ∀ 𝑡  ∈  ( SubGrp ‘ 𝐺 ) ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) )  →  ( 𝑢  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑢 ) ) ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							a2d | 
							⊢ ( 𝑢  ∈  Fin  →  ( ( 𝜑  →  ∀ 𝑡  ∈  ( SubGrp ‘ 𝐺 ) ( 𝑡  ⊊  𝑢  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) )  →  ( 𝜑  →  ( 𝑢  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑢 ) ) ) ) )  | 
						
						
							| 46 | 
							
								29 45
							 | 
							biimtrid | 
							⊢ ( 𝑢  ∈  Fin  →  ( ∀ 𝑡 ( 𝑡  ⊊  𝑢  →  ( 𝜑  →  ( 𝑡  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑡 ) ) ) )  →  ( 𝜑  →  ( 𝑢  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝑢 ) ) ) ) )  | 
						
						
							| 47 | 
							
								14 20 46
							 | 
							findcard3 | 
							⊢ ( 𝐵  ∈  Fin  →  ( 𝜑  →  ( 𝐵  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝐵 ) ) ) )  | 
						
						
							| 48 | 
							
								5 47
							 | 
							mpcom | 
							⊢ ( 𝜑  →  ( 𝐵  ∈  ( SubGrp ‘ 𝐺 )  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝐵 ) ) )  | 
						
						
							| 49 | 
							
								8 48
							 | 
							mpd | 
							⊢ ( 𝜑  →  ∃ 𝑠  ∈  Word  𝐶 ( 𝐺 dom   DProd  𝑠  ∧  ( 𝐺  DProd  𝑠 )  =  𝐵 ) )  |