Step |
Hyp |
Ref |
Expression |
1 |
|
pgpfac1.k |
⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
2 |
|
pgpfac1.s |
⊢ 𝑆 = ( 𝐾 ‘ { 𝐴 } ) |
3 |
|
pgpfac1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
4 |
|
pgpfac1.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
5 |
|
pgpfac1.e |
⊢ 𝐸 = ( gEx ‘ 𝐺 ) |
6 |
|
pgpfac1.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
7 |
|
pgpfac1.l |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
8 |
|
pgpfac1.p |
⊢ ( 𝜑 → 𝑃 pGrp 𝐺 ) |
9 |
|
pgpfac1.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
10 |
|
pgpfac1.n |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
11 |
|
pgpfac1.oe |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) = 𝐸 ) |
12 |
|
pgpfac1.u |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
13 |
|
pgpfac1.au |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
14 |
|
pgpfac1.w |
⊢ ( 𝜑 → 𝑊 ∈ ( SubGrp ‘ 𝐺 ) ) |
15 |
|
pgpfac1.i |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝑊 ) = { 0 } ) |
16 |
|
pgpfac1.ss |
⊢ ( 𝜑 → ( 𝑆 ⊕ 𝑊 ) ⊆ 𝑈 ) |
17 |
|
pgpfac1.2 |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤 ) → ¬ ( 𝑆 ⊕ 𝑊 ) ⊊ 𝑤 ) ) |
18 |
|
pgpfac1.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑈 ∖ ( 𝑆 ⊕ 𝑊 ) ) ) |
19 |
|
pgpfac1.mg |
⊢ · = ( .g ‘ 𝐺 ) |
20 |
|
pgpfac1.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
21 |
|
pgpfac1.mw |
⊢ ( 𝜑 → ( ( 𝑃 · 𝐶 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝐴 ) ) ∈ 𝑊 ) |
22 |
18
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝐶 ∈ ( 𝑆 ⊕ 𝑊 ) ) |
23 |
|
pgpprm |
⊢ ( 𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ ) |
24 |
8 23
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
25 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
26 |
9 25
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
27 |
3 5
|
gexcl2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) → 𝐸 ∈ ℕ ) |
28 |
26 10 27
|
syl2anc |
⊢ ( 𝜑 → 𝐸 ∈ ℕ ) |
29 |
|
pceq0 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ ) → ( ( 𝑃 pCnt 𝐸 ) = 0 ↔ ¬ 𝑃 ∥ 𝐸 ) ) |
30 |
24 28 29
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 pCnt 𝐸 ) = 0 ↔ ¬ 𝑃 ∥ 𝐸 ) ) |
31 |
|
oveq2 |
⊢ ( ( 𝑃 pCnt 𝐸 ) = 0 → ( 𝑃 ↑ ( 𝑃 pCnt 𝐸 ) ) = ( 𝑃 ↑ 0 ) ) |
32 |
30 31
|
syl6bir |
⊢ ( 𝜑 → ( ¬ 𝑃 ∥ 𝐸 → ( 𝑃 ↑ ( 𝑃 pCnt 𝐸 ) ) = ( 𝑃 ↑ 0 ) ) ) |
33 |
3
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝐵 ≠ ∅ ) |
34 |
26 33
|
syl |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
35 |
|
hashnncl |
⊢ ( 𝐵 ∈ Fin → ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ 𝐵 ≠ ∅ ) ) |
36 |
10 35
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ 𝐵 ≠ ∅ ) ) |
37 |
34 36
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
38 |
24 37
|
pccld |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 ) |
39 |
3 5
|
gexdvds3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) → 𝐸 ∥ ( ♯ ‘ 𝐵 ) ) |
40 |
26 10 39
|
syl2anc |
⊢ ( 𝜑 → 𝐸 ∥ ( ♯ ‘ 𝐵 ) ) |
41 |
3
|
pgphash |
⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝐵 ) ) ) ) |
42 |
8 10 41
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝐵 ) ) ) ) |
43 |
40 42
|
breqtrd |
⊢ ( 𝜑 → 𝐸 ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝐵 ) ) ) ) |
44 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑃 pCnt ( ♯ ‘ 𝐵 ) ) → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝐵 ) ) ) ) |
45 |
44
|
breq2d |
⊢ ( 𝑘 = ( 𝑃 pCnt ( ♯ ‘ 𝐵 ) ) → ( 𝐸 ∥ ( 𝑃 ↑ 𝑘 ) ↔ 𝐸 ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝐵 ) ) ) ) ) |
46 |
45
|
rspcev |
⊢ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝐵 ) ) ∈ ℕ0 ∧ 𝐸 ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝐵 ) ) ) ) → ∃ 𝑘 ∈ ℕ0 𝐸 ∥ ( 𝑃 ↑ 𝑘 ) ) |
47 |
38 43 46
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℕ0 𝐸 ∥ ( 𝑃 ↑ 𝑘 ) ) |
48 |
|
pcprmpw2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ ) → ( ∃ 𝑘 ∈ ℕ0 𝐸 ∥ ( 𝑃 ↑ 𝑘 ) ↔ 𝐸 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐸 ) ) ) ) |
49 |
24 28 48
|
syl2anc |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℕ0 𝐸 ∥ ( 𝑃 ↑ 𝑘 ) ↔ 𝐸 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐸 ) ) ) ) |
50 |
47 49
|
mpbid |
⊢ ( 𝜑 → 𝐸 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐸 ) ) ) |
51 |
50
|
eqcomd |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝐸 ) ) = 𝐸 ) |
52 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
53 |
24 52
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
54 |
53
|
nncnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
55 |
54
|
exp0d |
⊢ ( 𝜑 → ( 𝑃 ↑ 0 ) = 1 ) |
56 |
51 55
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐸 ) ) = ( 𝑃 ↑ 0 ) ↔ 𝐸 = 1 ) ) |
57 |
26
|
grpmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
58 |
3 5
|
gex1 |
⊢ ( 𝐺 ∈ Mnd → ( 𝐸 = 1 ↔ 𝐵 ≈ 1o ) ) |
59 |
57 58
|
syl |
⊢ ( 𝜑 → ( 𝐸 = 1 ↔ 𝐵 ≈ 1o ) ) |
60 |
56 59
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐸 ) ) = ( 𝑃 ↑ 0 ) ↔ 𝐵 ≈ 1o ) ) |
61 |
32 60
|
sylibd |
⊢ ( 𝜑 → ( ¬ 𝑃 ∥ 𝐸 → 𝐵 ≈ 1o ) ) |
62 |
3
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
63 |
26 62
|
syl |
⊢ ( 𝜑 → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
64 |
63
|
acsmred |
⊢ ( 𝜑 → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
65 |
3
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ 𝐵 ) |
66 |
12 65
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐵 ) |
67 |
66 13
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
68 |
1
|
mrcsncl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝐴 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
69 |
64 67 68
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ‘ { 𝐴 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
70 |
2 69
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
71 |
7
|
lsmsubg2 |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑊 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑆 ⊕ 𝑊 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
72 |
9 70 14 71
|
syl3anc |
⊢ ( 𝜑 → ( 𝑆 ⊕ 𝑊 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
73 |
6
|
subg0cl |
⊢ ( ( 𝑆 ⊕ 𝑊 ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( 𝑆 ⊕ 𝑊 ) ) |
74 |
72 73
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 𝑆 ⊕ 𝑊 ) ) |
75 |
74
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ( 𝑆 ⊕ 𝑊 ) ) |
76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≈ 1o ) → { 0 } ⊆ ( 𝑆 ⊕ 𝑊 ) ) |
77 |
18
|
eldifad |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
78 |
66 77
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≈ 1o ) → 𝐶 ∈ 𝐵 ) |
80 |
3 6
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
81 |
26 80
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
82 |
|
en1eqsn |
⊢ ( ( 0 ∈ 𝐵 ∧ 𝐵 ≈ 1o ) → 𝐵 = { 0 } ) |
83 |
81 82
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐵 ≈ 1o ) → 𝐵 = { 0 } ) |
84 |
79 83
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 ≈ 1o ) → 𝐶 ∈ { 0 } ) |
85 |
76 84
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝐵 ≈ 1o ) → 𝐶 ∈ ( 𝑆 ⊕ 𝑊 ) ) |
86 |
85
|
ex |
⊢ ( 𝜑 → ( 𝐵 ≈ 1o → 𝐶 ∈ ( 𝑆 ⊕ 𝑊 ) ) ) |
87 |
61 86
|
syld |
⊢ ( 𝜑 → ( ¬ 𝑃 ∥ 𝐸 → 𝐶 ∈ ( 𝑆 ⊕ 𝑊 ) ) ) |
88 |
22 87
|
mt3d |
⊢ ( 𝜑 → 𝑃 ∥ 𝐸 ) |
89 |
28
|
nncnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
90 |
53
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
91 |
89 54 90
|
divcan1d |
⊢ ( 𝜑 → ( ( 𝐸 / 𝑃 ) · 𝑃 ) = 𝐸 ) |
92 |
11 91
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) = ( ( 𝐸 / 𝑃 ) · 𝑃 ) ) |
93 |
|
nndivdvds |
⊢ ( ( 𝐸 ∈ ℕ ∧ 𝑃 ∈ ℕ ) → ( 𝑃 ∥ 𝐸 ↔ ( 𝐸 / 𝑃 ) ∈ ℕ ) ) |
94 |
28 53 93
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∥ 𝐸 ↔ ( 𝐸 / 𝑃 ) ∈ ℕ ) ) |
95 |
88 94
|
mpbid |
⊢ ( 𝜑 → ( 𝐸 / 𝑃 ) ∈ ℕ ) |
96 |
95
|
nnzd |
⊢ ( 𝜑 → ( 𝐸 / 𝑃 ) ∈ ℤ ) |
97 |
96 20
|
zmulcld |
⊢ ( 𝜑 → ( ( 𝐸 / 𝑃 ) · 𝑀 ) ∈ ℤ ) |
98 |
67
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ 𝐵 ) |
99 |
64 1 98
|
mrcssidd |
⊢ ( 𝜑 → { 𝐴 } ⊆ ( 𝐾 ‘ { 𝐴 } ) ) |
100 |
99 2
|
sseqtrrdi |
⊢ ( 𝜑 → { 𝐴 } ⊆ 𝑆 ) |
101 |
|
snssg |
⊢ ( 𝐴 ∈ 𝑈 → ( 𝐴 ∈ 𝑆 ↔ { 𝐴 } ⊆ 𝑆 ) ) |
102 |
13 101
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ↔ { 𝐴 } ⊆ 𝑆 ) ) |
103 |
100 102
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
104 |
19
|
subgmulgcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( 𝐸 / 𝑃 ) · 𝑀 ) ∈ ℤ ∧ 𝐴 ∈ 𝑆 ) → ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) ∈ 𝑆 ) |
105 |
70 97 103 104
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) ∈ 𝑆 ) |
106 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
107 |
24 106
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
108 |
3 19
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶 ∈ 𝐵 ) → ( 𝑃 · 𝐶 ) ∈ 𝐵 ) |
109 |
26 107 78 108
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 · 𝐶 ) ∈ 𝐵 ) |
110 |
3 19
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝐵 ) → ( 𝑀 · 𝐴 ) ∈ 𝐵 ) |
111 |
26 20 67 110
|
syl3anc |
⊢ ( 𝜑 → ( 𝑀 · 𝐴 ) ∈ 𝐵 ) |
112 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
113 |
3 19 112
|
mulgdi |
⊢ ( ( 𝐺 ∈ Abel ∧ ( ( 𝐸 / 𝑃 ) ∈ ℤ ∧ ( 𝑃 · 𝐶 ) ∈ 𝐵 ∧ ( 𝑀 · 𝐴 ) ∈ 𝐵 ) ) → ( ( 𝐸 / 𝑃 ) · ( ( 𝑃 · 𝐶 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝐴 ) ) ) = ( ( ( 𝐸 / 𝑃 ) · ( 𝑃 · 𝐶 ) ) ( +g ‘ 𝐺 ) ( ( 𝐸 / 𝑃 ) · ( 𝑀 · 𝐴 ) ) ) ) |
114 |
9 96 109 111 113
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐸 / 𝑃 ) · ( ( 𝑃 · 𝐶 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝐴 ) ) ) = ( ( ( 𝐸 / 𝑃 ) · ( 𝑃 · 𝐶 ) ) ( +g ‘ 𝐺 ) ( ( 𝐸 / 𝑃 ) · ( 𝑀 · 𝐴 ) ) ) ) |
115 |
91
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 / 𝑃 ) · 𝑃 ) · 𝐶 ) = ( 𝐸 · 𝐶 ) ) |
116 |
3 19
|
mulgass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝐸 / 𝑃 ) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝐶 ∈ 𝐵 ) ) → ( ( ( 𝐸 / 𝑃 ) · 𝑃 ) · 𝐶 ) = ( ( 𝐸 / 𝑃 ) · ( 𝑃 · 𝐶 ) ) ) |
117 |
26 96 107 78 116
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐸 / 𝑃 ) · 𝑃 ) · 𝐶 ) = ( ( 𝐸 / 𝑃 ) · ( 𝑃 · 𝐶 ) ) ) |
118 |
3 5 19 6
|
gexid |
⊢ ( 𝐶 ∈ 𝐵 → ( 𝐸 · 𝐶 ) = 0 ) |
119 |
78 118
|
syl |
⊢ ( 𝜑 → ( 𝐸 · 𝐶 ) = 0 ) |
120 |
115 117 119
|
3eqtr3rd |
⊢ ( 𝜑 → 0 = ( ( 𝐸 / 𝑃 ) · ( 𝑃 · 𝐶 ) ) ) |
121 |
3 19
|
mulgass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝐸 / 𝑃 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝐵 ) ) → ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) = ( ( 𝐸 / 𝑃 ) · ( 𝑀 · 𝐴 ) ) ) |
122 |
26 96 20 67 121
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) = ( ( 𝐸 / 𝑃 ) · ( 𝑀 · 𝐴 ) ) ) |
123 |
120 122
|
oveq12d |
⊢ ( 𝜑 → ( 0 ( +g ‘ 𝐺 ) ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) ) = ( ( ( 𝐸 / 𝑃 ) · ( 𝑃 · 𝐶 ) ) ( +g ‘ 𝐺 ) ( ( 𝐸 / 𝑃 ) · ( 𝑀 · 𝐴 ) ) ) ) |
124 |
3
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝐵 ) |
125 |
70 124
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
126 |
125 105
|
sseldd |
⊢ ( 𝜑 → ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) ∈ 𝐵 ) |
127 |
3 112 6
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) ) = ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) ) |
128 |
26 126 127
|
syl2anc |
⊢ ( 𝜑 → ( 0 ( +g ‘ 𝐺 ) ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) ) = ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) ) |
129 |
114 123 128
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝐸 / 𝑃 ) · ( ( 𝑃 · 𝐶 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝐴 ) ) ) = ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) ) |
130 |
19
|
subgmulgcl |
⊢ ( ( 𝑊 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐸 / 𝑃 ) ∈ ℤ ∧ ( ( 𝑃 · 𝐶 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝐴 ) ) ∈ 𝑊 ) → ( ( 𝐸 / 𝑃 ) · ( ( 𝑃 · 𝐶 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝐴 ) ) ) ∈ 𝑊 ) |
131 |
14 96 21 130
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐸 / 𝑃 ) · ( ( 𝑃 · 𝐶 ) ( +g ‘ 𝐺 ) ( 𝑀 · 𝐴 ) ) ) ∈ 𝑊 ) |
132 |
129 131
|
eqeltrrd |
⊢ ( 𝜑 → ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) ∈ 𝑊 ) |
133 |
105 132
|
elind |
⊢ ( 𝜑 → ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) ∈ ( 𝑆 ∩ 𝑊 ) ) |
134 |
133 15
|
eleqtrd |
⊢ ( 𝜑 → ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) ∈ { 0 } ) |
135 |
|
elsni |
⊢ ( ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) ∈ { 0 } → ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) = 0 ) |
136 |
134 135
|
syl |
⊢ ( 𝜑 → ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) = 0 ) |
137 |
3 4 19 6
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ ( ( 𝐸 / 𝑃 ) · 𝑀 ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝐸 / 𝑃 ) · 𝑀 ) ↔ ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) = 0 ) ) |
138 |
26 67 97 137
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝐸 / 𝑃 ) · 𝑀 ) ↔ ( ( ( 𝐸 / 𝑃 ) · 𝑀 ) · 𝐴 ) = 0 ) ) |
139 |
136 138
|
mpbird |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝐸 / 𝑃 ) · 𝑀 ) ) |
140 |
92 139
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( 𝐸 / 𝑃 ) · 𝑃 ) ∥ ( ( 𝐸 / 𝑃 ) · 𝑀 ) ) |
141 |
95
|
nnne0d |
⊢ ( 𝜑 → ( 𝐸 / 𝑃 ) ≠ 0 ) |
142 |
|
dvdscmulr |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( ( 𝐸 / 𝑃 ) ∈ ℤ ∧ ( 𝐸 / 𝑃 ) ≠ 0 ) ) → ( ( ( 𝐸 / 𝑃 ) · 𝑃 ) ∥ ( ( 𝐸 / 𝑃 ) · 𝑀 ) ↔ 𝑃 ∥ 𝑀 ) ) |
143 |
107 20 96 141 142
|
syl112anc |
⊢ ( 𝜑 → ( ( ( 𝐸 / 𝑃 ) · 𝑃 ) ∥ ( ( 𝐸 / 𝑃 ) · 𝑀 ) ↔ 𝑃 ∥ 𝑀 ) ) |
144 |
140 143
|
mpbid |
⊢ ( 𝜑 → 𝑃 ∥ 𝑀 ) |
145 |
88 144
|
jca |
⊢ ( 𝜑 → ( 𝑃 ∥ 𝐸 ∧ 𝑃 ∥ 𝑀 ) ) |