Step |
Hyp |
Ref |
Expression |
1 |
|
pgpfac.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
pgpfac.c |
⊢ 𝐶 = { 𝑟 ∈ ( SubGrp ‘ 𝐺 ) ∣ ( 𝐺 ↾s 𝑟 ) ∈ ( CycGrp ∩ ran pGrp ) } |
3 |
|
pgpfac.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
4 |
|
pgpfac.p |
⊢ ( 𝜑 → 𝑃 pGrp 𝐺 ) |
5 |
|
pgpfac.f |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
6 |
|
pgpfac.u |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
7 |
|
pgpfac.a |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑈 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) |
8 |
|
wrd0 |
⊢ ∅ ∈ Word 𝐶 |
9 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
10 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
11 |
10
|
dprd0 |
⊢ ( 𝐺 ∈ Grp → ( 𝐺 dom DProd ∅ ∧ ( 𝐺 DProd ∅ ) = { ( 0g ‘ 𝐺 ) } ) ) |
12 |
3 9 11
|
3syl |
⊢ ( 𝜑 → ( 𝐺 dom DProd ∅ ∧ ( 𝐺 DProd ∅ ) = { ( 0g ‘ 𝐺 ) } ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) = 1 ) → ( 𝐺 dom DProd ∅ ∧ ( 𝐺 DProd ∅ ) = { ( 0g ‘ 𝐺 ) } ) ) |
14 |
10
|
subg0cl |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑈 ) |
15 |
6 14
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝑈 ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) = 1 ) → ( 0g ‘ 𝐺 ) ∈ 𝑈 ) |
17 |
|
eqid |
⊢ ( 𝐺 ↾s 𝑈 ) = ( 𝐺 ↾s 𝑈 ) |
18 |
17
|
subgbas |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) |
19 |
6 18
|
syl |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) = 1 ) → 𝑈 = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) |
21 |
17
|
subggrp |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝑈 ) ∈ Grp ) |
22 |
6 21
|
syl |
⊢ ( 𝜑 → ( 𝐺 ↾s 𝑈 ) ∈ Grp ) |
23 |
|
grpmnd |
⊢ ( ( 𝐺 ↾s 𝑈 ) ∈ Grp → ( 𝐺 ↾s 𝑈 ) ∈ Mnd ) |
24 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) |
25 |
|
eqid |
⊢ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) |
26 |
24 25
|
gex1 |
⊢ ( ( 𝐺 ↾s 𝑈 ) ∈ Mnd → ( ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) = 1 ↔ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ≈ 1o ) ) |
27 |
22 23 26
|
3syl |
⊢ ( 𝜑 → ( ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) = 1 ↔ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ≈ 1o ) ) |
28 |
27
|
biimpa |
⊢ ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) = 1 ) → ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ≈ 1o ) |
29 |
20 28
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) = 1 ) → 𝑈 ≈ 1o ) |
30 |
|
en1eqsn |
⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑈 ∧ 𝑈 ≈ 1o ) → 𝑈 = { ( 0g ‘ 𝐺 ) } ) |
31 |
16 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) = 1 ) → 𝑈 = { ( 0g ‘ 𝐺 ) } ) |
32 |
31
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) = 1 ) → ( ( 𝐺 DProd ∅ ) = 𝑈 ↔ ( 𝐺 DProd ∅ ) = { ( 0g ‘ 𝐺 ) } ) ) |
33 |
32
|
anbi2d |
⊢ ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) = 1 ) → ( ( 𝐺 dom DProd ∅ ∧ ( 𝐺 DProd ∅ ) = 𝑈 ) ↔ ( 𝐺 dom DProd ∅ ∧ ( 𝐺 DProd ∅ ) = { ( 0g ‘ 𝐺 ) } ) ) ) |
34 |
13 33
|
mpbird |
⊢ ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) = 1 ) → ( 𝐺 dom DProd ∅ ∧ ( 𝐺 DProd ∅ ) = 𝑈 ) ) |
35 |
|
breq2 |
⊢ ( 𝑠 = ∅ → ( 𝐺 dom DProd 𝑠 ↔ 𝐺 dom DProd ∅ ) ) |
36 |
|
oveq2 |
⊢ ( 𝑠 = ∅ → ( 𝐺 DProd 𝑠 ) = ( 𝐺 DProd ∅ ) ) |
37 |
36
|
eqeq1d |
⊢ ( 𝑠 = ∅ → ( ( 𝐺 DProd 𝑠 ) = 𝑈 ↔ ( 𝐺 DProd ∅ ) = 𝑈 ) ) |
38 |
35 37
|
anbi12d |
⊢ ( 𝑠 = ∅ → ( ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑈 ) ↔ ( 𝐺 dom DProd ∅ ∧ ( 𝐺 DProd ∅ ) = 𝑈 ) ) ) |
39 |
38
|
rspcev |
⊢ ( ( ∅ ∈ Word 𝐶 ∧ ( 𝐺 dom DProd ∅ ∧ ( 𝐺 DProd ∅ ) = 𝑈 ) ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑈 ) ) |
40 |
8 34 39
|
sylancr |
⊢ ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) = 1 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑈 ) ) |
41 |
17
|
subgabl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 ↾s 𝑈 ) ∈ Abel ) |
42 |
3 6 41
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ↾s 𝑈 ) ∈ Abel ) |
43 |
1
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ 𝐵 ) |
44 |
6 43
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐵 ) |
45 |
5 44
|
ssfid |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
46 |
19 45
|
eqeltrrd |
⊢ ( 𝜑 → ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∈ Fin ) |
47 |
24 25
|
gexcl2 |
⊢ ( ( ( 𝐺 ↾s 𝑈 ) ∈ Grp ∧ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∈ Fin ) → ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ∈ ℕ ) |
48 |
22 46 47
|
syl2anc |
⊢ ( 𝜑 → ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ∈ ℕ ) |
49 |
|
eqid |
⊢ ( od ‘ ( 𝐺 ↾s 𝑈 ) ) = ( od ‘ ( 𝐺 ↾s 𝑈 ) ) |
50 |
24 25 49
|
gexex |
⊢ ( ( ( 𝐺 ↾s 𝑈 ) ∈ Abel ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ∈ ℕ ) → ∃ 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) |
51 |
42 48 50
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) → ∃ 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) |
53 |
|
eqid |
⊢ ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) = ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) |
54 |
|
eqid |
⊢ ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) = ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) |
55 |
|
eqid |
⊢ ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) = ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) |
56 |
|
eqid |
⊢ ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) = ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) |
57 |
|
subgpgp |
⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑃 pGrp ( 𝐺 ↾s 𝑈 ) ) |
58 |
4 6 57
|
syl2anc |
⊢ ( 𝜑 → 𝑃 pGrp ( 𝐺 ↾s 𝑈 ) ) |
59 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) → 𝑃 pGrp ( 𝐺 ↾s 𝑈 ) ) |
60 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) → ( 𝐺 ↾s 𝑈 ) ∈ Abel ) |
61 |
46
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) → ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∈ Fin ) |
62 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) → ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) |
63 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) → 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) |
64 |
53 54 24 49 25 55 56 59 60 61 62 63
|
pgpfac1 |
⊢ ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) → ∃ 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ( ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ∧ ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) |
65 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ∧ ( 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ∧ ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ) → 𝐺 ∈ Abel ) |
66 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ∧ ( 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ∧ ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ) → 𝑃 pGrp 𝐺 ) |
67 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ∧ ( 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ∧ ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ) → 𝐵 ∈ Fin ) |
68 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ∧ ( 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ∧ ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
69 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ∧ ( 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ∧ ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ) → ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑈 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) |
70 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ∧ ( 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ∧ ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ) → ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) |
71 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ∧ ( 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ∧ ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ) → 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) |
72 |
68 18
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ∧ ( 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ∧ ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ) → 𝑈 = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) |
73 |
71 72
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ∧ ( 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ∧ ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ) → 𝑥 ∈ 𝑈 ) |
74 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ∧ ( 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ∧ ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ) → ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) |
75 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ∧ ( 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ∧ ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ) → 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) |
76 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ∧ ( 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ∧ ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ) → ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ) |
77 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ∧ ( 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ∧ ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ) → ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) |
78 |
77 72
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ∧ ( 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ∧ ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ) → ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = 𝑈 ) |
79 |
1 2 65 66 67 68 69 17 53 49 25 55 56 70 73 74 75 76 78
|
pgpfaclem2 |
⊢ ( ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ∧ ( 𝑤 ∈ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ∩ 𝑤 ) = { ( 0g ‘ ( 𝐺 ↾s 𝑈 ) ) } ∧ ( ( ( mrCls ‘ ( SubGrp ‘ ( 𝐺 ↾s 𝑈 ) ) ) ‘ { 𝑥 } ) ( LSSum ‘ ( 𝐺 ↾s 𝑈 ) ) 𝑤 ) = ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑈 ) ) |
80 |
64 79
|
rexlimddv |
⊢ ( ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝑈 ) ) ∧ ( ( od ‘ ( 𝐺 ↾s 𝑈 ) ) ‘ 𝑥 ) = ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ) ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑈 ) ) |
81 |
52 80
|
rexlimddv |
⊢ ( ( 𝜑 ∧ ( gEx ‘ ( 𝐺 ↾s 𝑈 ) ) ≠ 1 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑈 ) ) |
82 |
40 81
|
pm2.61dane |
⊢ ( 𝜑 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑈 ) ) |