| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgpfi.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( od ‘ 𝐺 )  =  ( od ‘ 𝐺 ) | 
						
							| 3 | 1 2 | ispgp | ⊢ ( 𝑃  pGrp  𝐺  ↔  ( 𝑃  ∈  ℙ  ∧  𝐺  ∈  Grp  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) ) | 
						
							| 4 |  | simprl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  𝑃  ∈  ℙ ) | 
						
							| 5 | 1 | grpbn0 | ⊢ ( 𝐺  ∈  Grp  →  𝑋  ≠  ∅ ) | 
						
							| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  𝑋  ≠  ∅ ) | 
						
							| 7 |  | hashnncl | ⊢ ( 𝑋  ∈  Fin  →  ( ( ♯ ‘ 𝑋 )  ∈  ℕ  ↔  𝑋  ≠  ∅ ) ) | 
						
							| 8 | 7 | ad2antlr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( ( ♯ ‘ 𝑋 )  ∈  ℕ  ↔  𝑋  ≠  ∅ ) ) | 
						
							| 9 | 6 8 | mpbird | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( ♯ ‘ 𝑋 )  ∈  ℕ ) | 
						
							| 10 | 4 9 | pccld | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ℕ0 ) | 
						
							| 11 | 10 | nn0red | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 12 | 11 | leidd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ≤  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 13 | 10 | nn0zd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ℤ ) | 
						
							| 14 |  | pcid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ℤ )  →  ( 𝑃  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  =  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 15 | 4 13 14 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( 𝑃  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  =  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 16 | 12 15 | breqtrrd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ≤  ( 𝑃  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 17 | 16 | ad2antrr | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  =  𝑃 )  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ≤  ( 𝑃  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  =  𝑃 )  →  𝑝  =  𝑃 ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  =  𝑃 )  →  ( 𝑝  pCnt  ( ♯ ‘ 𝑋 ) )  =  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 20 | 18 | oveq1d | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  =  𝑃 )  →  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  =  ( 𝑃  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 21 | 17 19 20 | 3brtr4d | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  =  𝑃 )  →  ( 𝑝  pCnt  ( ♯ ‘ 𝑋 ) )  ≤  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 22 |  | simp-4l | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  →  𝐺  ∈  Grp ) | 
						
							| 23 |  | simplr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  𝑋  ∈  Fin ) | 
						
							| 24 | 23 | ad2antrr | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  →  𝑋  ∈  Fin ) | 
						
							| 25 |  | simplr | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  →  𝑝  ∈  ℙ ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  →  𝑝  ∥  ( ♯ ‘ 𝑋 ) ) | 
						
							| 27 | 1 2 | odcau | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  →  ∃ 𝑔  ∈  𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) | 
						
							| 28 | 22 24 25 26 27 | syl31anc | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  →  ∃ 𝑔  ∈  𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) | 
						
							| 29 | 25 | adantr | ⊢ ( ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  ∧  ( 𝑔  ∈  𝑋  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) )  →  𝑝  ∈  ℙ ) | 
						
							| 30 |  | prmz | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℤ ) | 
						
							| 31 |  | iddvds | ⊢ ( 𝑝  ∈  ℤ  →  𝑝  ∥  𝑝 ) | 
						
							| 32 | 29 30 31 | 3syl | ⊢ ( ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  ∧  ( 𝑔  ∈  𝑋  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) )  →  𝑝  ∥  𝑝 ) | 
						
							| 33 |  | simprr | ⊢ ( ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  ∧  ( 𝑔  ∈  𝑋  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) | 
						
							| 34 | 32 33 | breqtrrd | ⊢ ( ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  ∧  ( 𝑔  ∈  𝑋  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) )  →  𝑝  ∥  ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) | 
						
							| 35 |  | simplrr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) | 
						
							| 36 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑔  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 )  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  ( 𝑃 ↑ 𝑚 ) ) ) | 
						
							| 37 | 36 | rexbidv | ⊢ ( 𝑥  =  𝑔  →  ( ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 )  ↔  ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  ( 𝑃 ↑ 𝑚 ) ) ) | 
						
							| 38 | 37 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 )  ∧  𝑔  ∈  𝑋 )  →  ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  ( 𝑃 ↑ 𝑚 ) ) | 
						
							| 39 | 35 38 | sylan | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑔  ∈  𝑋 )  →  ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  ( 𝑃 ↑ 𝑚 ) ) | 
						
							| 40 | 39 | ad2ant2r | ⊢ ( ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  ∧  ( 𝑔  ∈  𝑋  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) )  →  ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  ( 𝑃 ↑ 𝑚 ) ) | 
						
							| 41 | 4 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  ∧  ( 𝑔  ∈  𝑋  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 42 |  | prmnn | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℕ ) | 
						
							| 43 | 29 42 | syl | ⊢ ( ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  ∧  ( 𝑔  ∈  𝑋  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) )  →  𝑝  ∈  ℕ ) | 
						
							| 44 | 33 43 | eqeltrd | ⊢ ( ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  ∧  ( 𝑔  ∈  𝑋  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  ∈  ℕ ) | 
						
							| 45 |  | pcprmpw | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  ∈  ℕ )  →  ( ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  ( 𝑃 ↑ 𝑚 )  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) ) | 
						
							| 46 | 41 44 45 | syl2anc | ⊢ ( ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  ∧  ( 𝑔  ∈  𝑋  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) )  →  ( ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  ( 𝑃 ↑ 𝑚 )  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) ) | 
						
							| 47 | 40 46 | mpbid | ⊢ ( ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  ∧  ( 𝑔  ∈  𝑋  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) | 
						
							| 48 | 34 47 | breqtrd | ⊢ ( ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  ∧  ( 𝑔  ∈  𝑋  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) )  →  𝑝  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) | 
						
							| 49 | 41 44 | pccld | ⊢ ( ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  ∧  ( 𝑔  ∈  𝑋  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) )  →  ( 𝑃  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑔 ) )  ∈  ℕ0 ) | 
						
							| 50 |  | prmdvdsexpr | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑃  ∈  ℙ  ∧  ( 𝑃  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑔 ) )  ∈  ℕ0 )  →  ( 𝑝  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) )  →  𝑝  =  𝑃 ) ) | 
						
							| 51 | 29 41 49 50 | syl3anc | ⊢ ( ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  ∧  ( 𝑔  ∈  𝑋  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) )  →  ( 𝑝  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) )  →  𝑝  =  𝑃 ) ) | 
						
							| 52 | 48 51 | mpd | ⊢ ( ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  ∧  ( 𝑔  ∈  𝑋  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑔 )  =  𝑝 ) )  →  𝑝  =  𝑃 ) | 
						
							| 53 | 28 52 | rexlimddv | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ∥  ( ♯ ‘ 𝑋 ) )  →  𝑝  =  𝑃 ) | 
						
							| 54 | 53 | ex | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ∥  ( ♯ ‘ 𝑋 )  →  𝑝  =  𝑃 ) ) | 
						
							| 55 | 54 | necon3ad | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ≠  𝑃  →  ¬  𝑝  ∥  ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 56 | 55 | imp | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  ¬  𝑝  ∥  ( ♯ ‘ 𝑋 ) ) | 
						
							| 57 |  | simplr | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  𝑝  ∈  ℙ ) | 
						
							| 58 | 9 | ad2antrr | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  ( ♯ ‘ 𝑋 )  ∈  ℕ ) | 
						
							| 59 |  | pceq0 | ⊢ ( ( 𝑝  ∈  ℙ  ∧  ( ♯ ‘ 𝑋 )  ∈  ℕ )  →  ( ( 𝑝  pCnt  ( ♯ ‘ 𝑋 ) )  =  0  ↔  ¬  𝑝  ∥  ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 60 | 57 58 59 | syl2anc | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  ( ( 𝑝  pCnt  ( ♯ ‘ 𝑋 ) )  =  0  ↔  ¬  𝑝  ∥  ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 61 | 56 60 | mpbird | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  ( 𝑝  pCnt  ( ♯ ‘ 𝑋 ) )  =  0 ) | 
						
							| 62 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 63 | 62 | ad2antrl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  𝑃  ∈  ℕ ) | 
						
							| 64 | 63 10 | nnexpcld | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) )  ∈  ℕ ) | 
						
							| 65 | 64 | ad2antrr | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) )  ∈  ℕ ) | 
						
							| 66 | 57 65 | pccld | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  ∈  ℕ0 ) | 
						
							| 67 | 66 | nn0ge0d | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  0  ≤  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 68 | 61 67 | eqbrtrd | ⊢ ( ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  ∧  𝑝  ≠  𝑃 )  →  ( 𝑝  pCnt  ( ♯ ‘ 𝑋 ) )  ≤  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 69 | 21 68 | pm2.61dane | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  pCnt  ( ♯ ‘ 𝑋 ) )  ≤  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 70 | 69 | ralrimiva | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ♯ ‘ 𝑋 ) )  ≤  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 71 |  | hashcl | ⊢ ( 𝑋  ∈  Fin  →  ( ♯ ‘ 𝑋 )  ∈  ℕ0 ) | 
						
							| 72 | 71 | ad2antlr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( ♯ ‘ 𝑋 )  ∈  ℕ0 ) | 
						
							| 73 | 72 | nn0zd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( ♯ ‘ 𝑋 )  ∈  ℤ ) | 
						
							| 74 | 64 | nnzd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) )  ∈  ℤ ) | 
						
							| 75 |  | pc2dvds | ⊢ ( ( ( ♯ ‘ 𝑋 )  ∈  ℤ  ∧  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) )  ∈  ℤ )  →  ( ( ♯ ‘ 𝑋 )  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) )  ↔  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ♯ ‘ 𝑋 ) )  ≤  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) ) | 
						
							| 76 | 73 74 75 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( ( ♯ ‘ 𝑋 )  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) )  ↔  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ♯ ‘ 𝑋 ) )  ≤  ( 𝑝  pCnt  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) ) | 
						
							| 77 | 70 76 | mpbird | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( ♯ ‘ 𝑋 )  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 78 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  →  ( 𝑃 ↑ 𝑛 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 79 | 78 | breq2d | ⊢ ( 𝑛  =  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  →  ( ( ♯ ‘ 𝑋 )  ∥  ( 𝑃 ↑ 𝑛 )  ↔  ( ♯ ‘ 𝑋 )  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 80 | 79 | rspcev | ⊢ ( ( ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑋 )  ∥  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  →  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  ∥  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 81 | 10 77 80 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  ∥  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 82 |  | pcprmpw2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ♯ ‘ 𝑋 )  ∈  ℕ )  →  ( ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  ∥  ( 𝑃 ↑ 𝑛 )  ↔  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 83 |  | pcprmpw | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ♯ ‘ 𝑋 )  ∈  ℕ )  →  ( ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 )  ↔  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 84 | 82 83 | bitr4d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ♯ ‘ 𝑋 )  ∈  ℕ )  →  ( ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  ∥  ( 𝑃 ↑ 𝑛 )  ↔  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 85 | 4 9 84 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  ∥  ( 𝑃 ↑ 𝑛 )  ↔  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 86 | 81 85 | mpbid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 87 | 4 86 | jca | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 88 | 87 | 3adantr2 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  ∧  ( 𝑃  ∈  ℙ  ∧  𝐺  ∈  Grp  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) ) )  →  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 89 | 88 | ex | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  →  ( ( 𝑃  ∈  ℙ  ∧  𝐺  ∈  Grp  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑚  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑚 ) )  →  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 ) ) ) ) | 
						
							| 90 | 3 89 | biimtrid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  →  ( 𝑃  pGrp  𝐺  →  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 ) ) ) ) | 
						
							| 91 | 1 | pgpfi1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑛  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 )  →  𝑃  pGrp  𝐺 ) ) | 
						
							| 92 | 91 | 3expia | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ )  →  ( 𝑛  ∈  ℕ0  →  ( ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 )  →  𝑃  pGrp  𝐺 ) ) ) | 
						
							| 93 | 92 | rexlimdv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ )  →  ( ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 )  →  𝑃  pGrp  𝐺 ) ) | 
						
							| 94 | 93 | expimpd | ⊢ ( 𝐺  ∈  Grp  →  ( ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 ) )  →  𝑃  pGrp  𝐺 ) ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  →  ( ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 ) )  →  𝑃  pGrp  𝐺 ) ) | 
						
							| 96 | 90 95 | impbid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  →  ( 𝑃  pGrp  𝐺  ↔  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 ) ) ) ) |