Step |
Hyp |
Ref |
Expression |
1 |
|
pgpfi.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
3 |
1 2
|
ispgp |
⊢ ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) |
4 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → 𝑃 ∈ ℙ ) |
5 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → 𝑋 ≠ ∅ ) |
7 |
|
hashnncl |
⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
8 |
7
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
9 |
6 8
|
mpbird |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
10 |
4 9
|
pccld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 ) |
11 |
10
|
nn0red |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℝ ) |
12 |
11
|
leidd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) |
13 |
10
|
nn0zd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℤ ) |
14 |
|
pcid |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℤ ) → ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) |
15 |
4 13 14
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) |
16 |
12 15
|
breqtrrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
18 |
|
simpr |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → 𝑝 = 𝑃 ) |
19 |
18
|
oveq1d |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) |
20 |
18
|
oveq1d |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) = ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
21 |
17 19 20
|
3brtr4d |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
22 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → 𝐺 ∈ Grp ) |
23 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → 𝑋 ∈ Fin ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑋 ∈ Fin ) |
25 |
|
simplr |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑝 ∈ ℙ ) |
26 |
|
simpr |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) |
27 |
1 2
|
odcau |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → ∃ 𝑔 ∈ 𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) |
28 |
22 24 25 26 27
|
syl31anc |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → ∃ 𝑔 ∈ 𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) |
29 |
25
|
adantr |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 ∈ ℙ ) |
30 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
31 |
|
iddvds |
⊢ ( 𝑝 ∈ ℤ → 𝑝 ∥ 𝑝 ) |
32 |
29 30 31
|
3syl |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 ∥ 𝑝 ) |
33 |
|
simprr |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) |
34 |
32 33
|
breqtrrd |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 ∥ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) |
35 |
|
simplrr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) |
36 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑔 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ) ) |
37 |
36
|
rexbidv |
⊢ ( 𝑥 = 𝑔 → ( ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ↔ ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ) ) |
38 |
37
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ∧ 𝑔 ∈ 𝑋 ) → ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ) |
39 |
35 38
|
sylan |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑔 ∈ 𝑋 ) → ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ) |
40 |
39
|
ad2ant2r |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ) |
41 |
4
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑃 ∈ ℙ ) |
42 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
43 |
29 42
|
syl |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 ∈ ℕ ) |
44 |
33 43
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ∈ ℕ ) |
45 |
|
pcprmpw |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ∈ ℕ ) → ( ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) ) |
46 |
41 44 45
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) ) |
47 |
40 46
|
mpbid |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) |
48 |
34 47
|
breqtrd |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) |
49 |
41 44
|
pccld |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ∈ ℕ0 ) |
50 |
|
prmdvdsexpr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ∈ ℕ0 ) → ( 𝑝 ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) → 𝑝 = 𝑃 ) ) |
51 |
29 41 49 50
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( 𝑝 ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) → 𝑝 = 𝑃 ) ) |
52 |
48 51
|
mpd |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 = 𝑃 ) |
53 |
28 52
|
rexlimddv |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑝 = 𝑃 ) |
54 |
53
|
ex |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ♯ ‘ 𝑋 ) → 𝑝 = 𝑃 ) ) |
55 |
54
|
necon3ad |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ≠ 𝑃 → ¬ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ) |
56 |
55
|
imp |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ¬ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) |
57 |
|
simplr |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → 𝑝 ∈ ℙ ) |
58 |
9
|
ad2antrr |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
59 |
|
pceq0 |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ( ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) = 0 ↔ ¬ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ) |
60 |
57 58 59
|
syl2anc |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) = 0 ↔ ¬ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ) |
61 |
56 60
|
mpbird |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) = 0 ) |
62 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
63 |
62
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → 𝑃 ∈ ℕ ) |
64 |
63 10
|
nnexpcld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ∈ ℕ ) |
65 |
64
|
ad2antrr |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ∈ ℕ ) |
66 |
57 65
|
pccld |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ∈ ℕ0 ) |
67 |
66
|
nn0ge0d |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → 0 ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
68 |
61 67
|
eqbrtrd |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
69 |
21 68
|
pm2.61dane |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
70 |
69
|
ralrimiva |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
71 |
|
hashcl |
⊢ ( 𝑋 ∈ Fin → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
72 |
71
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
73 |
72
|
nn0zd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ♯ ‘ 𝑋 ) ∈ ℤ ) |
74 |
64
|
nnzd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ∈ ℤ ) |
75 |
|
pc2dvds |
⊢ ( ( ( ♯ ‘ 𝑋 ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ∈ ℤ ) → ( ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
76 |
73 74 75
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
77 |
70 76
|
mpbird |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
78 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
79 |
78
|
breq2d |
⊢ ( 𝑛 = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) → ( ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
80 |
79
|
rspcev |
⊢ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
81 |
10 77 80
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
82 |
|
pcprmpw2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
83 |
|
pcprmpw |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ↔ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
84 |
82 83
|
bitr4d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
85 |
4 9 84
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
86 |
81 85
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) |
87 |
4 86
|
jca |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
88 |
87
|
3adantr2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
89 |
88
|
ex |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) → ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) ) |
90 |
3 89
|
syl5bi |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( 𝑃 pGrp 𝐺 → ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) ) |
91 |
1
|
pgpfi1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) → 𝑃 pGrp 𝐺 ) ) |
92 |
91
|
3expia |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → ( 𝑛 ∈ ℕ0 → ( ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) → 𝑃 pGrp 𝐺 ) ) ) |
93 |
92
|
rexlimdv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) → 𝑃 pGrp 𝐺 ) ) |
94 |
93
|
expimpd |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) → 𝑃 pGrp 𝐺 ) ) |
95 |
94
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) → 𝑃 pGrp 𝐺 ) ) |
96 |
90 95
|
impbid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) ) |