| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgpfi1.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | simpl2 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 3 |  | simpl1 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  →  𝐺  ∈  Grp ) | 
						
							| 4 |  | simpll3 | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑥  ∈  𝑋 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 | 3 | adantr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑥  ∈  𝑋 )  →  𝐺  ∈  Grp ) | 
						
							| 6 |  | simplr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑥  ∈  𝑋 )  →  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) ) | 
						
							| 7 | 2 | adantr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑥  ∈  𝑋 )  →  𝑃  ∈  ℙ ) | 
						
							| 8 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑥  ∈  𝑋 )  →  𝑃  ∈  ℕ ) | 
						
							| 10 | 9 4 | nnexpcld | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑃 ↑ 𝑁 )  ∈  ℕ ) | 
						
							| 11 | 10 | nnnn0d | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑃 ↑ 𝑁 )  ∈  ℕ0 ) | 
						
							| 12 | 6 11 | eqeltrd | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑥  ∈  𝑋 )  →  ( ♯ ‘ 𝑋 )  ∈  ℕ0 ) | 
						
							| 13 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 14 |  | hashclb | ⊢ ( 𝑋  ∈  V  →  ( 𝑋  ∈  Fin  ↔  ( ♯ ‘ 𝑋 )  ∈  ℕ0 ) ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ ( 𝑋  ∈  Fin  ↔  ( ♯ ‘ 𝑋 )  ∈  ℕ0 ) | 
						
							| 16 | 12 15 | sylibr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑥  ∈  𝑋 )  →  𝑋  ∈  Fin ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 18 |  | eqid | ⊢ ( od ‘ 𝐺 )  =  ( od ‘ 𝐺 ) | 
						
							| 19 | 1 18 | oddvds2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑥  ∈  𝑋 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( ♯ ‘ 𝑋 ) ) | 
						
							| 20 | 5 16 17 19 | syl3anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑥  ∈  𝑋 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( ♯ ‘ 𝑋 ) ) | 
						
							| 21 | 20 6 | breqtrd | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑥  ∈  𝑋 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( 𝑃 ↑ 𝑁 ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑃 ↑ 𝑛 )  =  ( 𝑃 ↑ 𝑁 ) ) | 
						
							| 23 | 22 | breq2d | ⊢ ( 𝑛  =  𝑁  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( 𝑃 ↑ 𝑛 )  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( 𝑃 ↑ 𝑁 ) ) ) | 
						
							| 24 | 23 | rspcev | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( 𝑃 ↑ 𝑁 ) )  →  ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 25 | 4 21 24 | syl2anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑥  ∈  𝑋 )  →  ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 26 | 1 18 | odcl2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑥  ∈  𝑋 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℕ ) | 
						
							| 27 | 5 16 17 26 | syl3anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑥  ∈  𝑋 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℕ ) | 
						
							| 28 |  | pcprmpw2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℕ )  →  ( ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( 𝑃 ↑ 𝑛 )  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 29 |  | pcprmpw | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℕ )  →  ( ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 )  ↔  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 30 | 28 29 | bitr4d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∈  ℕ )  →  ( ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( 𝑃 ↑ 𝑛 )  ↔  ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 31 | 7 27 30 | syl2anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑥  ∈  𝑋 )  →  ( ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  ∥  ( 𝑃 ↑ 𝑛 )  ↔  ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 32 | 25 31 | mpbid | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑥  ∈  𝑋 )  →  ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 33 | 32 | ralrimiva | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 34 | 1 18 | ispgp | ⊢ ( 𝑃  pGrp  𝐺  ↔  ( 𝑃  ∈  ℙ  ∧  𝐺  ∈  Grp  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 35 | 2 3 33 34 | syl3anbrc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 ) )  →  𝑃  pGrp  𝐺 ) | 
						
							| 36 | 35 | ex | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑁 )  →  𝑃  pGrp  𝐺 ) ) |