| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgpfi.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
simpl |
⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑋 ∈ Fin ) → 𝑃 pGrp 𝐺 ) |
| 3 |
|
pgpgrp |
⊢ ( 𝑃 pGrp 𝐺 → 𝐺 ∈ Grp ) |
| 4 |
1
|
pgpfi2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
| 5 |
3 4
|
sylan |
⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑋 ∈ Fin ) → ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
| 6 |
2 5
|
mpbid |
⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑋 ∈ Fin ) → ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 7 |
6
|
simprd |
⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |