Metamath Proof Explorer


Theorem pgrpsubgsymg

Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019) (Revised by AV, 30-Mar-2024)

Ref Expression
Hypotheses pgrpsubgsymgbi.g 𝐺 = ( SymGrp ‘ 𝐴 )
pgrpsubgsymgbi.b 𝐵 = ( Base ‘ 𝐺 )
pgrpsubgsymg.c 𝐹 = ( Base ‘ 𝑃 )
Assertion pgrpsubgsymg ( 𝐴𝑉 → ( ( 𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ( +g𝑃 ) = ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) ) → 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 pgrpsubgsymgbi.g 𝐺 = ( SymGrp ‘ 𝐴 )
2 pgrpsubgsymgbi.b 𝐵 = ( Base ‘ 𝐺 )
3 pgrpsubgsymg.c 𝐹 = ( Base ‘ 𝑃 )
4 1 symggrp ( 𝐴𝑉𝐺 ∈ Grp )
5 simp1 ( ( 𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ( +g𝑃 ) = ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) ) → 𝑃 ∈ Grp )
6 4 5 anim12i ( ( 𝐴𝑉 ∧ ( 𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ( +g𝑃 ) = ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) ) ) → ( 𝐺 ∈ Grp ∧ 𝑃 ∈ Grp ) )
7 simp2 ( ( 𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ( +g𝑃 ) = ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) ) → 𝐹𝐵 )
8 simp3 ( ( 𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ( +g𝑃 ) = ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) ) → ( +g𝑃 ) = ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) )
9 1 2 symgbasmap ( 𝑓𝐵𝑓 ∈ ( 𝐴m 𝐴 ) )
10 9 ssriv 𝐵 ⊆ ( 𝐴m 𝐴 )
11 sstr ( ( 𝐹𝐵𝐵 ⊆ ( 𝐴m 𝐴 ) ) → 𝐹 ⊆ ( 𝐴m 𝐴 ) )
12 10 11 mpan2 ( 𝐹𝐵𝐹 ⊆ ( 𝐴m 𝐴 ) )
13 resmpo ( ( 𝐹 ⊆ ( 𝐴m 𝐴 ) ∧ 𝐹 ⊆ ( 𝐴m 𝐴 ) ) → ( ( 𝑓 ∈ ( 𝐴m 𝐴 ) , 𝑔 ∈ ( 𝐴m 𝐴 ) ↦ ( 𝑓𝑔 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) )
14 13 anidms ( 𝐹 ⊆ ( 𝐴m 𝐴 ) → ( ( 𝑓 ∈ ( 𝐴m 𝐴 ) , 𝑔 ∈ ( 𝐴m 𝐴 ) ↦ ( 𝑓𝑔 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) )
15 12 14 syl ( 𝐹𝐵 → ( ( 𝑓 ∈ ( 𝐴m 𝐴 ) , 𝑔 ∈ ( 𝐴m 𝐴 ) ↦ ( 𝑓𝑔 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) )
16 eqid ( 𝐴m 𝐴 ) = ( 𝐴m 𝐴 )
17 eqid ( +g𝐺 ) = ( +g𝐺 )
18 1 16 17 symgplusg ( +g𝐺 ) = ( 𝑓 ∈ ( 𝐴m 𝐴 ) , 𝑔 ∈ ( 𝐴m 𝐴 ) ↦ ( 𝑓𝑔 ) )
19 18 eqcomi ( 𝑓 ∈ ( 𝐴m 𝐴 ) , 𝑔 ∈ ( 𝐴m 𝐴 ) ↦ ( 𝑓𝑔 ) ) = ( +g𝐺 )
20 19 reseq1i ( ( 𝑓 ∈ ( 𝐴m 𝐴 ) , 𝑔 ∈ ( 𝐴m 𝐴 ) ↦ ( 𝑓𝑔 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( ( +g𝐺 ) ↾ ( 𝐹 × 𝐹 ) )
21 15 20 eqtr3di ( 𝐹𝐵 → ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) = ( ( +g𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) )
22 21 3ad2ant2 ( ( 𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ( +g𝑃 ) = ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) ) → ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) = ( ( +g𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) )
23 8 22 eqtrd ( ( 𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ( +g𝑃 ) = ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) ) → ( +g𝑃 ) = ( ( +g𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) )
24 7 23 jca ( ( 𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ( +g𝑃 ) = ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) ) → ( 𝐹𝐵 ∧ ( +g𝑃 ) = ( ( +g𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) ) )
25 24 adantl ( ( 𝐴𝑉 ∧ ( 𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ( +g𝑃 ) = ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) ) ) → ( 𝐹𝐵 ∧ ( +g𝑃 ) = ( ( +g𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) ) )
26 2 3 grpissubg ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ Grp ) → ( ( 𝐹𝐵 ∧ ( +g𝑃 ) = ( ( +g𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) ) → 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ) )
27 6 25 26 sylc ( ( 𝐴𝑉 ∧ ( 𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ( +g𝑃 ) = ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) ) ) → 𝐹 ∈ ( SubGrp ‘ 𝐺 ) )
28 27 ex ( 𝐴𝑉 → ( ( 𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ( +g𝑃 ) = ( 𝑓𝐹 , 𝑔𝐹 ↦ ( 𝑓𝑔 ) ) ) → 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ) )