| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgrpsubgsymgbi.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐴 ) | 
						
							| 2 |  | pgrpsubgsymgbi.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | pgrpsubgsymg.c | ⊢ 𝐹  =  ( Base ‘ 𝑃 ) | 
						
							| 4 | 1 | symggrp | ⊢ ( 𝐴  ∈  𝑉  →  𝐺  ∈  Grp ) | 
						
							| 5 |  | simp1 | ⊢ ( ( 𝑃  ∈  Grp  ∧  𝐹  ⊆  𝐵  ∧  ( +g ‘ 𝑃 )  =  ( 𝑓  ∈  𝐹 ,  𝑔  ∈  𝐹  ↦  ( 𝑓  ∘  𝑔 ) ) )  →  𝑃  ∈  Grp ) | 
						
							| 6 | 4 5 | anim12i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑃  ∈  Grp  ∧  𝐹  ⊆  𝐵  ∧  ( +g ‘ 𝑃 )  =  ( 𝑓  ∈  𝐹 ,  𝑔  ∈  𝐹  ↦  ( 𝑓  ∘  𝑔 ) ) ) )  →  ( 𝐺  ∈  Grp  ∧  𝑃  ∈  Grp ) ) | 
						
							| 7 |  | simp2 | ⊢ ( ( 𝑃  ∈  Grp  ∧  𝐹  ⊆  𝐵  ∧  ( +g ‘ 𝑃 )  =  ( 𝑓  ∈  𝐹 ,  𝑔  ∈  𝐹  ↦  ( 𝑓  ∘  𝑔 ) ) )  →  𝐹  ⊆  𝐵 ) | 
						
							| 8 |  | simp3 | ⊢ ( ( 𝑃  ∈  Grp  ∧  𝐹  ⊆  𝐵  ∧  ( +g ‘ 𝑃 )  =  ( 𝑓  ∈  𝐹 ,  𝑔  ∈  𝐹  ↦  ( 𝑓  ∘  𝑔 ) ) )  →  ( +g ‘ 𝑃 )  =  ( 𝑓  ∈  𝐹 ,  𝑔  ∈  𝐹  ↦  ( 𝑓  ∘  𝑔 ) ) ) | 
						
							| 9 | 1 2 | symgbasmap | ⊢ ( 𝑓  ∈  𝐵  →  𝑓  ∈  ( 𝐴  ↑m  𝐴 ) ) | 
						
							| 10 | 9 | ssriv | ⊢ 𝐵  ⊆  ( 𝐴  ↑m  𝐴 ) | 
						
							| 11 |  | sstr | ⊢ ( ( 𝐹  ⊆  𝐵  ∧  𝐵  ⊆  ( 𝐴  ↑m  𝐴 ) )  →  𝐹  ⊆  ( 𝐴  ↑m  𝐴 ) ) | 
						
							| 12 | 10 11 | mpan2 | ⊢ ( 𝐹  ⊆  𝐵  →  𝐹  ⊆  ( 𝐴  ↑m  𝐴 ) ) | 
						
							| 13 |  | resmpo | ⊢ ( ( 𝐹  ⊆  ( 𝐴  ↑m  𝐴 )  ∧  𝐹  ⊆  ( 𝐴  ↑m  𝐴 ) )  →  ( ( 𝑓  ∈  ( 𝐴  ↑m  𝐴 ) ,  𝑔  ∈  ( 𝐴  ↑m  𝐴 )  ↦  ( 𝑓  ∘  𝑔 ) )  ↾  ( 𝐹  ×  𝐹 ) )  =  ( 𝑓  ∈  𝐹 ,  𝑔  ∈  𝐹  ↦  ( 𝑓  ∘  𝑔 ) ) ) | 
						
							| 14 | 13 | anidms | ⊢ ( 𝐹  ⊆  ( 𝐴  ↑m  𝐴 )  →  ( ( 𝑓  ∈  ( 𝐴  ↑m  𝐴 ) ,  𝑔  ∈  ( 𝐴  ↑m  𝐴 )  ↦  ( 𝑓  ∘  𝑔 ) )  ↾  ( 𝐹  ×  𝐹 ) )  =  ( 𝑓  ∈  𝐹 ,  𝑔  ∈  𝐹  ↦  ( 𝑓  ∘  𝑔 ) ) ) | 
						
							| 15 | 12 14 | syl | ⊢ ( 𝐹  ⊆  𝐵  →  ( ( 𝑓  ∈  ( 𝐴  ↑m  𝐴 ) ,  𝑔  ∈  ( 𝐴  ↑m  𝐴 )  ↦  ( 𝑓  ∘  𝑔 ) )  ↾  ( 𝐹  ×  𝐹 ) )  =  ( 𝑓  ∈  𝐹 ,  𝑔  ∈  𝐹  ↦  ( 𝑓  ∘  𝑔 ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( 𝐴  ↑m  𝐴 )  =  ( 𝐴  ↑m  𝐴 ) | 
						
							| 17 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 18 | 1 16 17 | symgplusg | ⊢ ( +g ‘ 𝐺 )  =  ( 𝑓  ∈  ( 𝐴  ↑m  𝐴 ) ,  𝑔  ∈  ( 𝐴  ↑m  𝐴 )  ↦  ( 𝑓  ∘  𝑔 ) ) | 
						
							| 19 | 18 | eqcomi | ⊢ ( 𝑓  ∈  ( 𝐴  ↑m  𝐴 ) ,  𝑔  ∈  ( 𝐴  ↑m  𝐴 )  ↦  ( 𝑓  ∘  𝑔 ) )  =  ( +g ‘ 𝐺 ) | 
						
							| 20 | 19 | reseq1i | ⊢ ( ( 𝑓  ∈  ( 𝐴  ↑m  𝐴 ) ,  𝑔  ∈  ( 𝐴  ↑m  𝐴 )  ↦  ( 𝑓  ∘  𝑔 ) )  ↾  ( 𝐹  ×  𝐹 ) )  =  ( ( +g ‘ 𝐺 )  ↾  ( 𝐹  ×  𝐹 ) ) | 
						
							| 21 | 15 20 | eqtr3di | ⊢ ( 𝐹  ⊆  𝐵  →  ( 𝑓  ∈  𝐹 ,  𝑔  ∈  𝐹  ↦  ( 𝑓  ∘  𝑔 ) )  =  ( ( +g ‘ 𝐺 )  ↾  ( 𝐹  ×  𝐹 ) ) ) | 
						
							| 22 | 21 | 3ad2ant2 | ⊢ ( ( 𝑃  ∈  Grp  ∧  𝐹  ⊆  𝐵  ∧  ( +g ‘ 𝑃 )  =  ( 𝑓  ∈  𝐹 ,  𝑔  ∈  𝐹  ↦  ( 𝑓  ∘  𝑔 ) ) )  →  ( 𝑓  ∈  𝐹 ,  𝑔  ∈  𝐹  ↦  ( 𝑓  ∘  𝑔 ) )  =  ( ( +g ‘ 𝐺 )  ↾  ( 𝐹  ×  𝐹 ) ) ) | 
						
							| 23 | 8 22 | eqtrd | ⊢ ( ( 𝑃  ∈  Grp  ∧  𝐹  ⊆  𝐵  ∧  ( +g ‘ 𝑃 )  =  ( 𝑓  ∈  𝐹 ,  𝑔  ∈  𝐹  ↦  ( 𝑓  ∘  𝑔 ) ) )  →  ( +g ‘ 𝑃 )  =  ( ( +g ‘ 𝐺 )  ↾  ( 𝐹  ×  𝐹 ) ) ) | 
						
							| 24 | 7 23 | jca | ⊢ ( ( 𝑃  ∈  Grp  ∧  𝐹  ⊆  𝐵  ∧  ( +g ‘ 𝑃 )  =  ( 𝑓  ∈  𝐹 ,  𝑔  ∈  𝐹  ↦  ( 𝑓  ∘  𝑔 ) ) )  →  ( 𝐹  ⊆  𝐵  ∧  ( +g ‘ 𝑃 )  =  ( ( +g ‘ 𝐺 )  ↾  ( 𝐹  ×  𝐹 ) ) ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑃  ∈  Grp  ∧  𝐹  ⊆  𝐵  ∧  ( +g ‘ 𝑃 )  =  ( 𝑓  ∈  𝐹 ,  𝑔  ∈  𝐹  ↦  ( 𝑓  ∘  𝑔 ) ) ) )  →  ( 𝐹  ⊆  𝐵  ∧  ( +g ‘ 𝑃 )  =  ( ( +g ‘ 𝐺 )  ↾  ( 𝐹  ×  𝐹 ) ) ) ) | 
						
							| 26 | 2 3 | grpissubg | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  Grp )  →  ( ( 𝐹  ⊆  𝐵  ∧  ( +g ‘ 𝑃 )  =  ( ( +g ‘ 𝐺 )  ↾  ( 𝐹  ×  𝐹 ) ) )  →  𝐹  ∈  ( SubGrp ‘ 𝐺 ) ) ) | 
						
							| 27 | 6 25 26 | sylc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑃  ∈  Grp  ∧  𝐹  ⊆  𝐵  ∧  ( +g ‘ 𝑃 )  =  ( 𝑓  ∈  𝐹 ,  𝑔  ∈  𝐹  ↦  ( 𝑓  ∘  𝑔 ) ) ) )  →  𝐹  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 28 | 27 | ex | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑃  ∈  Grp  ∧  𝐹  ⊆  𝐵  ∧  ( +g ‘ 𝑃 )  =  ( 𝑓  ∈  𝐹 ,  𝑔  ∈  𝐹  ↦  ( 𝑓  ∘  𝑔 ) ) )  →  𝐹  ∈  ( SubGrp ‘ 𝐺 ) ) ) |