Step |
Hyp |
Ref |
Expression |
1 |
|
pgrpsubgsymgbi.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
|
pgrpsubgsymgbi.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
pgrpsubgsymg.c |
⊢ 𝐹 = ( Base ‘ 𝑃 ) |
4 |
1
|
symggrp |
⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Grp ) |
5 |
|
simp1 |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → 𝑃 ∈ Grp ) |
6 |
4 5
|
anim12i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) ) → ( 𝐺 ∈ Grp ∧ 𝑃 ∈ Grp ) ) |
7 |
|
simp2 |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → 𝐹 ⊆ 𝐵 ) |
8 |
|
simp3 |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
9 |
1 2
|
symgbasmap |
⊢ ( 𝑓 ∈ 𝐵 → 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) ) |
10 |
9
|
ssriv |
⊢ 𝐵 ⊆ ( 𝐴 ↑m 𝐴 ) |
11 |
|
sstr |
⊢ ( ( 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ↑m 𝐴 ) ) → 𝐹 ⊆ ( 𝐴 ↑m 𝐴 ) ) |
12 |
10 11
|
mpan2 |
⊢ ( 𝐹 ⊆ 𝐵 → 𝐹 ⊆ ( 𝐴 ↑m 𝐴 ) ) |
13 |
|
resmpo |
⊢ ( ( 𝐹 ⊆ ( 𝐴 ↑m 𝐴 ) ∧ 𝐹 ⊆ ( 𝐴 ↑m 𝐴 ) ) → ( ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
14 |
13
|
anidms |
⊢ ( 𝐹 ⊆ ( 𝐴 ↑m 𝐴 ) → ( ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
15 |
12 14
|
syl |
⊢ ( 𝐹 ⊆ 𝐵 → ( ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
16 |
|
eqid |
⊢ ( 𝐴 ↑m 𝐴 ) = ( 𝐴 ↑m 𝐴 ) |
17 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
18 |
1 16 17
|
symgplusg |
⊢ ( +g ‘ 𝐺 ) = ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) |
19 |
18
|
eqcomi |
⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) = ( +g ‘ 𝐺 ) |
20 |
19
|
reseq1i |
⊢ ( ( 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑓 ∘ 𝑔 ) ) ↾ ( 𝐹 × 𝐹 ) ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) |
21 |
15 20
|
eqtr3di |
⊢ ( 𝐹 ⊆ 𝐵 → ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) ) |
22 |
21
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) ) |
23 |
8 22
|
eqtrd |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → ( +g ‘ 𝑃 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) ) |
24 |
7 23
|
jca |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → ( 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) ) → ( 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) ) ) |
26 |
2 3
|
grpissubg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ Grp ) → ( ( 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝐹 × 𝐹 ) ) ) → 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
27 |
6 25 26
|
sylc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) ) → 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ) |
28 |
27
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐹 , 𝑔 ∈ 𝐹 ↦ ( 𝑓 ∘ 𝑔 ) ) ) → 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ) ) |