Step |
Hyp |
Ref |
Expression |
1 |
|
pgrpsubgsymgbi.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
|
pgrpsubgsymgbi.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
2
|
issubg |
⊢ ( 𝑃 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) |
4 |
|
3anass |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ) |
5 |
3 4
|
bitri |
⊢ ( 𝑃 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ) |
6 |
1
|
symggrp |
⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Grp ) |
7 |
|
ibar |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ) ) |
8 |
7
|
bicomd |
⊢ ( 𝐺 ∈ Grp → ( ( 𝐺 ∈ Grp ∧ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ↔ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ) |
9 |
6 8
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐺 ∈ Grp ∧ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ↔ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ) |
10 |
5 9
|
syl5bb |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑃 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑃 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑃 ) ∈ Grp ) ) ) |