| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n | ⊢ 𝐺  =  ( toℂPreHil ‘ 𝑊 ) | 
						
							| 2 |  | tcphcph.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 3 |  | tcphcph.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | tcphcph.1 | ⊢ ( 𝜑  →  𝑊  ∈  PreHil ) | 
						
							| 5 |  | tcphcph.2 | ⊢ ( 𝜑  →  𝐹  =  ( ℂfld  ↾s  𝐾 ) ) | 
						
							| 6 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ 𝐹 ) | 
						
							| 9 |  | phllvec | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LVec ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 11 | 3 | lvecdrng | ⊢ ( 𝑊  ∈  LVec  →  𝐹  ∈  DivRing ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  𝐹  ∈  DivRing ) | 
						
							| 13 | 8 5 12 | cphsubrglem | ⊢ ( 𝜑  →  ( 𝐹  =  ( ℂfld  ↾s  ( Base ‘ 𝐹 ) )  ∧  ( Base ‘ 𝐹 )  =  ( 𝐾  ∩  ℂ )  ∧  ( Base ‘ 𝐹 )  ∈  ( SubRing ‘ ℂfld ) ) ) | 
						
							| 14 | 13 | simp1d | ⊢ ( 𝜑  →  𝐹  =  ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) | 
						
							| 15 | 13 | simp3d | ⊢ ( 𝜑  →  ( Base ‘ 𝐹 )  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 16 | 3 8 | isclm | ⊢ ( 𝑊  ∈  ℂMod  ↔  ( 𝑊  ∈  LMod  ∧  𝐹  =  ( ℂfld  ↾s  ( Base ‘ 𝐹 ) )  ∧  ( Base ‘ 𝐹 )  ∈  ( SubRing ‘ ℂfld ) ) ) | 
						
							| 17 | 7 14 15 16 | syl3anbrc | ⊢ ( 𝜑  →  𝑊  ∈  ℂMod ) |