Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) |
2 |
|
tcphcph.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
tcphcph.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
tcphcph.1 |
⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
5 |
|
tcphcph.2 |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
6 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
9 |
|
phllvec |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LVec ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
11 |
3
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
13 |
8 5 12
|
cphsubrglem |
⊢ ( 𝜑 → ( 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) = ( 𝐾 ∩ ℂ ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) ) |
14 |
13
|
simp1d |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
15 |
13
|
simp3d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) |
16 |
3 8
|
isclm |
⊢ ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) ) |
17 |
7 14 15 16
|
syl3anbrc |
⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |