Metamath Proof Explorer


Theorem phclm

Description: A pre-Hilbert space whose field of scalars is a restriction of the field of complex numbers is a subcomplex module. TODO: redundant hypotheses. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
tcphcph.v 𝑉 = ( Base ‘ 𝑊 )
tcphcph.f 𝐹 = ( Scalar ‘ 𝑊 )
tcphcph.1 ( 𝜑𝑊 ∈ PreHil )
tcphcph.2 ( 𝜑𝐹 = ( ℂflds 𝐾 ) )
Assertion phclm ( 𝜑𝑊 ∈ ℂMod )

Proof

Step Hyp Ref Expression
1 tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
2 tcphcph.v 𝑉 = ( Base ‘ 𝑊 )
3 tcphcph.f 𝐹 = ( Scalar ‘ 𝑊 )
4 tcphcph.1 ( 𝜑𝑊 ∈ PreHil )
5 tcphcph.2 ( 𝜑𝐹 = ( ℂflds 𝐾 ) )
6 phllmod ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod )
7 4 6 syl ( 𝜑𝑊 ∈ LMod )
8 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
9 phllvec ( 𝑊 ∈ PreHil → 𝑊 ∈ LVec )
10 4 9 syl ( 𝜑𝑊 ∈ LVec )
11 3 lvecdrng ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing )
12 10 11 syl ( 𝜑𝐹 ∈ DivRing )
13 8 5 12 cphsubrglem ( 𝜑 → ( 𝐹 = ( ℂflds ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) = ( 𝐾 ∩ ℂ ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) )
14 13 simp1d ( 𝜑𝐹 = ( ℂflds ( Base ‘ 𝐹 ) ) )
15 13 simp3d ( 𝜑 → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) )
16 3 8 isclm ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂflds ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) )
17 7 14 15 16 syl3anbrc ( 𝜑𝑊 ∈ ℂMod )