Metamath Proof Explorer


Theorem phi1

Description: Value of the Euler phi function at 1. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion phi1 ( ϕ ‘ 1 ) = 1

Proof

Step Hyp Ref Expression
1 1nn 1 ∈ ℕ
2 phicl2 ( 1 ∈ ℕ → ( ϕ ‘ 1 ) ∈ ( 1 ... 1 ) )
3 1 2 ax-mp ( ϕ ‘ 1 ) ∈ ( 1 ... 1 )
4 1z 1 ∈ ℤ
5 fzsn ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } )
6 4 5 ax-mp ( 1 ... 1 ) = { 1 }
7 3 6 eleqtri ( ϕ ‘ 1 ) ∈ { 1 }
8 elsni ( ( ϕ ‘ 1 ) ∈ { 1 } → ( ϕ ‘ 1 ) = 1 )
9 7 8 ax-mp ( ϕ ‘ 1 ) = 1