Step |
Hyp |
Ref |
Expression |
1 |
|
fzfi |
⊢ ( 1 ... ( 𝑁 − 1 ) ) ∈ Fin |
2 |
|
phibndlem |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ⊆ ( 1 ... ( 𝑁 − 1 ) ) ) |
3 |
|
ssdomg |
⊢ ( ( 1 ... ( 𝑁 − 1 ) ) ∈ Fin → ( { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ⊆ ( 1 ... ( 𝑁 − 1 ) ) → { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ≼ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
4 |
1 2 3
|
mpsyl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ≼ ( 1 ... ( 𝑁 − 1 ) ) ) |
5 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
6 |
|
ssrab2 |
⊢ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ⊆ ( 1 ... 𝑁 ) |
7 |
|
ssfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ⊆ ( 1 ... 𝑁 ) ) → { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ∈ Fin ) |
8 |
5 6 7
|
mp2an |
⊢ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ∈ Fin |
9 |
|
hashdom |
⊢ ( ( { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ∈ Fin ∧ ( 1 ... ( 𝑁 − 1 ) ) ∈ Fin ) → ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ≤ ( ♯ ‘ ( 1 ... ( 𝑁 − 1 ) ) ) ↔ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ≼ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
10 |
8 1 9
|
mp2an |
⊢ ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ≤ ( ♯ ‘ ( 1 ... ( 𝑁 − 1 ) ) ) ↔ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ≼ ( 1 ... ( 𝑁 − 1 ) ) ) |
11 |
4 10
|
sylibr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ≤ ( ♯ ‘ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
12 |
|
eluz2nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) |
13 |
|
phival |
⊢ ( 𝑁 ∈ ℕ → ( ϕ ‘ 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ) |
14 |
12 13
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ϕ ‘ 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ) |
15 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
16 |
|
hashfz1 |
⊢ ( ( 𝑁 − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 𝑁 − 1 ) ) ) = ( 𝑁 − 1 ) ) |
17 |
12 15 16
|
3syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ♯ ‘ ( 1 ... ( 𝑁 − 1 ) ) ) = ( 𝑁 − 1 ) ) |
18 |
17
|
eqcomd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − 1 ) = ( ♯ ‘ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
19 |
11 14 18
|
3brtr4d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ϕ ‘ 𝑁 ) ≤ ( 𝑁 − 1 ) ) |