| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluz2nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) |
| 2 |
|
fzm1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑥 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑥 = 𝑁 ) ) ) |
| 3 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 4 |
2 3
|
eleq2s |
⊢ ( 𝑁 ∈ ℕ → ( 𝑥 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑥 = 𝑁 ) ) ) |
| 5 |
4
|
biimpa |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑥 = 𝑁 ) ) |
| 6 |
5
|
ord |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ¬ 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑥 = 𝑁 ) ) |
| 7 |
1 6
|
sylan |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ¬ 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑥 = 𝑁 ) ) |
| 8 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℤ ) |
| 9 |
|
gcdid |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 gcd 𝑁 ) = ( abs ‘ 𝑁 ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 gcd 𝑁 ) = ( abs ‘ 𝑁 ) ) |
| 11 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 12 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 13 |
12
|
nn0ge0d |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ 𝑁 ) |
| 14 |
11 13
|
absidd |
⊢ ( 𝑁 ∈ ℕ → ( abs ‘ 𝑁 ) = 𝑁 ) |
| 15 |
1 14
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( abs ‘ 𝑁 ) = 𝑁 ) |
| 16 |
10 15
|
eqtrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 gcd 𝑁 ) = 𝑁 ) |
| 17 |
|
1re |
⊢ 1 ∈ ℝ |
| 18 |
|
eluz2gt1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑁 ) |
| 19 |
|
ltne |
⊢ ( ( 1 ∈ ℝ ∧ 1 < 𝑁 ) → 𝑁 ≠ 1 ) |
| 20 |
17 18 19
|
sylancr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ≠ 1 ) |
| 21 |
16 20
|
eqnetrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 gcd 𝑁 ) ≠ 1 ) |
| 22 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 gcd 𝑁 ) = ( 𝑁 gcd 𝑁 ) ) |
| 23 |
22
|
neeq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 gcd 𝑁 ) ≠ 1 ↔ ( 𝑁 gcd 𝑁 ) ≠ 1 ) ) |
| 24 |
21 23
|
syl5ibrcom |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑥 = 𝑁 → ( 𝑥 gcd 𝑁 ) ≠ 1 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 = 𝑁 → ( 𝑥 gcd 𝑁 ) ≠ 1 ) ) |
| 26 |
7 25
|
syld |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ¬ 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑥 gcd 𝑁 ) ≠ 1 ) ) |
| 27 |
26
|
necon4bd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑥 gcd 𝑁 ) = 1 → 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
| 28 |
27
|
ralrimiva |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∀ 𝑥 ∈ ( 1 ... 𝑁 ) ( ( 𝑥 gcd 𝑁 ) = 1 → 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
| 29 |
|
rabss |
⊢ ( { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ⊆ ( 1 ... ( 𝑁 − 1 ) ) ↔ ∀ 𝑥 ∈ ( 1 ... 𝑁 ) ( ( 𝑥 gcd 𝑁 ) = 1 → 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
| 30 |
28 29
|
sylibr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ⊆ ( 1 ... ( 𝑁 − 1 ) ) ) |