Metamath Proof Explorer


Theorem phicl

Description: Closure for the value of the Euler phi function. (Contributed by Mario Carneiro, 28-Feb-2014)

Ref Expression
Assertion phicl ( 𝑁 ∈ ℕ → ( ϕ ‘ 𝑁 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 phicl2 ( 𝑁 ∈ ℕ → ( ϕ ‘ 𝑁 ) ∈ ( 1 ... 𝑁 ) )
2 elfznn ( ( ϕ ‘ 𝑁 ) ∈ ( 1 ... 𝑁 ) → ( ϕ ‘ 𝑁 ) ∈ ℕ )
3 1 2 syl ( 𝑁 ∈ ℕ → ( ϕ ‘ 𝑁 ) ∈ ℕ )