Step |
Hyp |
Ref |
Expression |
1 |
|
phival |
⊢ ( 𝑁 ∈ ℕ → ( ϕ ‘ 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ) |
2 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
3 |
|
ssrab2 |
⊢ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ⊆ ( 1 ... 𝑁 ) |
4 |
|
ssfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ⊆ ( 1 ... 𝑁 ) ) → { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ∈ Fin ) |
5 |
2 3 4
|
mp2an |
⊢ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ∈ Fin |
6 |
|
hashcl |
⊢ ( { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ∈ Fin → ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ∈ ℕ0 ) |
7 |
5 6
|
ax-mp |
⊢ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ∈ ℕ0 |
8 |
7
|
nn0zi |
⊢ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ∈ ℤ |
9 |
8
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ∈ ℤ ) |
10 |
|
1z |
⊢ 1 ∈ ℤ |
11 |
|
hashsng |
⊢ ( 1 ∈ ℤ → ( ♯ ‘ { 1 } ) = 1 ) |
12 |
10 11
|
ax-mp |
⊢ ( ♯ ‘ { 1 } ) = 1 |
13 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
14 |
13
|
rabex |
⊢ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ∈ V |
15 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 gcd 𝑁 ) = ( 1 gcd 𝑁 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 gcd 𝑁 ) = 1 ↔ ( 1 gcd 𝑁 ) = 1 ) ) |
17 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) ) |
18 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
19 |
17 18
|
eleq2s |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ( 1 ... 𝑁 ) ) |
20 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
21 |
|
1gcd |
⊢ ( 𝑁 ∈ ℤ → ( 1 gcd 𝑁 ) = 1 ) |
22 |
20 21
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 1 gcd 𝑁 ) = 1 ) |
23 |
16 19 22
|
elrabd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) |
24 |
23
|
snssd |
⊢ ( 𝑁 ∈ ℕ → { 1 } ⊆ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) |
25 |
|
ssdomg |
⊢ ( { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ∈ V → ( { 1 } ⊆ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } → { 1 } ≼ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ) |
26 |
14 24 25
|
mpsyl |
⊢ ( 𝑁 ∈ ℕ → { 1 } ≼ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) |
27 |
|
snfi |
⊢ { 1 } ∈ Fin |
28 |
|
hashdom |
⊢ ( ( { 1 } ∈ Fin ∧ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ∈ Fin ) → ( ( ♯ ‘ { 1 } ) ≤ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ↔ { 1 } ≼ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ) |
29 |
27 5 28
|
mp2an |
⊢ ( ( ♯ ‘ { 1 } ) ≤ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ↔ { 1 } ≼ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) |
30 |
26 29
|
sylibr |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ { 1 } ) ≤ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ) |
31 |
12 30
|
eqbrtrrid |
⊢ ( 𝑁 ∈ ℕ → 1 ≤ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ) |
32 |
|
ssdomg |
⊢ ( ( 1 ... 𝑁 ) ∈ V → ( { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ⊆ ( 1 ... 𝑁 ) → { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ≼ ( 1 ... 𝑁 ) ) ) |
33 |
13 3 32
|
mp2 |
⊢ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ≼ ( 1 ... 𝑁 ) |
34 |
|
hashdom |
⊢ ( ( { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ≤ ( ♯ ‘ ( 1 ... 𝑁 ) ) ↔ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ≼ ( 1 ... 𝑁 ) ) ) |
35 |
5 2 34
|
mp2an |
⊢ ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ≤ ( ♯ ‘ ( 1 ... 𝑁 ) ) ↔ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ≼ ( 1 ... 𝑁 ) ) |
36 |
33 35
|
mpbir |
⊢ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ≤ ( ♯ ‘ ( 1 ... 𝑁 ) ) |
37 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
38 |
|
hashfz1 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
39 |
37 38
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
40 |
36 39
|
breqtrid |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ≤ 𝑁 ) |
41 |
|
elfz1 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ∈ ( 1 ... 𝑁 ) ↔ ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ∈ ℤ ∧ 1 ≤ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ∧ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ≤ 𝑁 ) ) ) |
42 |
10 20 41
|
sylancr |
⊢ ( 𝑁 ∈ ℕ → ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ∈ ( 1 ... 𝑁 ) ↔ ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ∈ ℤ ∧ 1 ≤ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ∧ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ≤ 𝑁 ) ) ) |
43 |
9 31 40 42
|
mpbir3and |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ∈ ( 1 ... 𝑁 ) ) |
44 |
1 43
|
eqeltrd |
⊢ ( 𝑁 ∈ ℕ → ( ϕ ‘ 𝑁 ) ∈ ( 1 ... 𝑁 ) ) |