| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( 0 ..^ ( 𝑀 · 𝑁 ) ) = ( 0 ..^ ( 𝑀 · 𝑁 ) ) |
| 2 |
|
eqid |
⊢ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) = ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) |
| 3 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ↦ 〈 ( 𝑥 mod 𝑀 ) , ( 𝑥 mod 𝑁 ) 〉 ) = ( 𝑥 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ↦ 〈 ( 𝑥 mod 𝑀 ) , ( 𝑥 mod 𝑁 ) 〉 ) |
| 4 |
|
id |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) |
| 5 |
|
eqid |
⊢ { 𝑦 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑦 gcd 𝑀 ) = 1 } = { 𝑦 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑦 gcd 𝑀 ) = 1 } |
| 6 |
|
eqid |
⊢ { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } = { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } |
| 7 |
|
eqid |
⊢ { 𝑦 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 · 𝑁 ) ) = 1 } = { 𝑦 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 · 𝑁 ) ) = 1 } |
| 8 |
1 2 3 4 5 6 7
|
phimullem |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ϕ ‘ ( 𝑀 · 𝑁 ) ) = ( ( ϕ ‘ 𝑀 ) · ( ϕ ‘ 𝑁 ) ) ) |