| Step |
Hyp |
Ref |
Expression |
| 1 |
|
crth.1 |
⊢ 𝑆 = ( 0 ..^ ( 𝑀 · 𝑁 ) ) |
| 2 |
|
crth.2 |
⊢ 𝑇 = ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) |
| 3 |
|
crth.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ 〈 ( 𝑥 mod 𝑀 ) , ( 𝑥 mod 𝑁 ) 〉 ) |
| 4 |
|
crth.4 |
⊢ ( 𝜑 → ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) |
| 5 |
|
phimul.4 |
⊢ 𝑈 = { 𝑦 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑦 gcd 𝑀 ) = 1 } |
| 6 |
|
phimul.5 |
⊢ 𝑉 = { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } |
| 7 |
|
phimul.6 |
⊢ 𝑊 = { 𝑦 ∈ 𝑆 ∣ ( 𝑦 gcd ( 𝑀 · 𝑁 ) ) = 1 } |
| 8 |
|
oveq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 gcd ( 𝑀 · 𝑁 ) ) = ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) ) |
| 9 |
8
|
eqeq1d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑦 gcd ( 𝑀 · 𝑁 ) ) = 1 ↔ ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = 1 ) ) |
| 10 |
9 7
|
elrab2 |
⊢ ( 𝑤 ∈ 𝑊 ↔ ( 𝑤 ∈ 𝑆 ∧ ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = 1 ) ) |
| 11 |
10
|
simplbi |
⊢ ( 𝑤 ∈ 𝑊 → 𝑤 ∈ 𝑆 ) |
| 12 |
|
oveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 mod 𝑀 ) = ( 𝑤 mod 𝑀 ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 mod 𝑁 ) = ( 𝑤 mod 𝑁 ) ) |
| 14 |
12 13
|
opeq12d |
⊢ ( 𝑥 = 𝑤 → 〈 ( 𝑥 mod 𝑀 ) , ( 𝑥 mod 𝑁 ) 〉 = 〈 ( 𝑤 mod 𝑀 ) , ( 𝑤 mod 𝑁 ) 〉 ) |
| 15 |
|
opex |
⊢ 〈 ( 𝑤 mod 𝑀 ) , ( 𝑤 mod 𝑁 ) 〉 ∈ V |
| 16 |
14 3 15
|
fvmpt |
⊢ ( 𝑤 ∈ 𝑆 → ( 𝐹 ‘ 𝑤 ) = 〈 ( 𝑤 mod 𝑀 ) , ( 𝑤 mod 𝑁 ) 〉 ) |
| 17 |
11 16
|
syl |
⊢ ( 𝑤 ∈ 𝑊 → ( 𝐹 ‘ 𝑤 ) = 〈 ( 𝑤 mod 𝑀 ) , ( 𝑤 mod 𝑁 ) 〉 ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑤 ) = 〈 ( 𝑤 mod 𝑀 ) , ( 𝑤 mod 𝑁 ) 〉 ) |
| 19 |
11 1
|
eleqtrdi |
⊢ ( 𝑤 ∈ 𝑊 → 𝑤 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → 𝑤 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ) |
| 21 |
|
elfzoelz |
⊢ ( 𝑤 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) → 𝑤 ∈ ℤ ) |
| 22 |
20 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → 𝑤 ∈ ℤ ) |
| 23 |
4
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → 𝑀 ∈ ℕ ) |
| 25 |
|
zmodfzo |
⊢ ( ( 𝑤 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝑤 mod 𝑀 ) ∈ ( 0 ..^ 𝑀 ) ) |
| 26 |
22 24 25
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 mod 𝑀 ) ∈ ( 0 ..^ 𝑀 ) ) |
| 27 |
|
modgcd |
⊢ ( ( 𝑤 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( ( 𝑤 mod 𝑀 ) gcd 𝑀 ) = ( 𝑤 gcd 𝑀 ) ) |
| 28 |
22 24 27
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( ( 𝑤 mod 𝑀 ) gcd 𝑀 ) = ( 𝑤 gcd 𝑀 ) ) |
| 29 |
24
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → 𝑀 ∈ ℤ ) |
| 30 |
|
gcddvds |
⊢ ( ( 𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑤 gcd 𝑀 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) ) |
| 31 |
22 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( ( 𝑤 gcd 𝑀 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) ) |
| 32 |
31
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd 𝑀 ) ∥ 𝑤 ) |
| 33 |
|
nnne0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ≠ 0 ) |
| 34 |
|
simpr |
⊢ ( ( 𝑤 = 0 ∧ 𝑀 = 0 ) → 𝑀 = 0 ) |
| 35 |
34
|
necon3ai |
⊢ ( 𝑀 ≠ 0 → ¬ ( 𝑤 = 0 ∧ 𝑀 = 0 ) ) |
| 36 |
24 33 35
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ¬ ( 𝑤 = 0 ∧ 𝑀 = 0 ) ) |
| 37 |
|
gcdn0cl |
⊢ ( ( ( 𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ¬ ( 𝑤 = 0 ∧ 𝑀 = 0 ) ) → ( 𝑤 gcd 𝑀 ) ∈ ℕ ) |
| 38 |
22 29 36 37
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd 𝑀 ) ∈ ℕ ) |
| 39 |
38
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd 𝑀 ) ∈ ℤ ) |
| 40 |
4
|
simp2d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → 𝑁 ∈ ℕ ) |
| 42 |
41
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → 𝑁 ∈ ℤ ) |
| 43 |
31
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) |
| 44 |
39 29 42 43
|
dvdsmultr1d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd 𝑀 ) ∥ ( 𝑀 · 𝑁 ) ) |
| 45 |
24 41
|
nnmulcld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑀 · 𝑁 ) ∈ ℕ ) |
| 46 |
45
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
| 47 |
|
nnne0 |
⊢ ( ( 𝑀 · 𝑁 ) ∈ ℕ → ( 𝑀 · 𝑁 ) ≠ 0 ) |
| 48 |
|
simpr |
⊢ ( ( 𝑤 = 0 ∧ ( 𝑀 · 𝑁 ) = 0 ) → ( 𝑀 · 𝑁 ) = 0 ) |
| 49 |
48
|
necon3ai |
⊢ ( ( 𝑀 · 𝑁 ) ≠ 0 → ¬ ( 𝑤 = 0 ∧ ( 𝑀 · 𝑁 ) = 0 ) ) |
| 50 |
45 47 49
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ¬ ( 𝑤 = 0 ∧ ( 𝑀 · 𝑁 ) = 0 ) ) |
| 51 |
|
dvdslegcd |
⊢ ( ( ( ( 𝑤 gcd 𝑀 ) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) ∧ ¬ ( 𝑤 = 0 ∧ ( 𝑀 · 𝑁 ) = 0 ) ) → ( ( ( 𝑤 gcd 𝑀 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑀 ) ∥ ( 𝑀 · 𝑁 ) ) → ( 𝑤 gcd 𝑀 ) ≤ ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) ) ) |
| 52 |
39 22 46 50 51
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( ( ( 𝑤 gcd 𝑀 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑀 ) ∥ ( 𝑀 · 𝑁 ) ) → ( 𝑤 gcd 𝑀 ) ≤ ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) ) ) |
| 53 |
32 44 52
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd 𝑀 ) ≤ ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) ) |
| 54 |
10
|
simprbi |
⊢ ( 𝑤 ∈ 𝑊 → ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = 1 ) |
| 55 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = 1 ) |
| 56 |
53 55
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd 𝑀 ) ≤ 1 ) |
| 57 |
|
nnle1eq1 |
⊢ ( ( 𝑤 gcd 𝑀 ) ∈ ℕ → ( ( 𝑤 gcd 𝑀 ) ≤ 1 ↔ ( 𝑤 gcd 𝑀 ) = 1 ) ) |
| 58 |
38 57
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( ( 𝑤 gcd 𝑀 ) ≤ 1 ↔ ( 𝑤 gcd 𝑀 ) = 1 ) ) |
| 59 |
56 58
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd 𝑀 ) = 1 ) |
| 60 |
28 59
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( ( 𝑤 mod 𝑀 ) gcd 𝑀 ) = 1 ) |
| 61 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑤 mod 𝑀 ) → ( 𝑦 gcd 𝑀 ) = ( ( 𝑤 mod 𝑀 ) gcd 𝑀 ) ) |
| 62 |
61
|
eqeq1d |
⊢ ( 𝑦 = ( 𝑤 mod 𝑀 ) → ( ( 𝑦 gcd 𝑀 ) = 1 ↔ ( ( 𝑤 mod 𝑀 ) gcd 𝑀 ) = 1 ) ) |
| 63 |
62 5
|
elrab2 |
⊢ ( ( 𝑤 mod 𝑀 ) ∈ 𝑈 ↔ ( ( 𝑤 mod 𝑀 ) ∈ ( 0 ..^ 𝑀 ) ∧ ( ( 𝑤 mod 𝑀 ) gcd 𝑀 ) = 1 ) ) |
| 64 |
26 60 63
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 mod 𝑀 ) ∈ 𝑈 ) |
| 65 |
|
zmodfzo |
⊢ ( ( 𝑤 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑤 mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 66 |
22 41 65
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 67 |
|
modgcd |
⊢ ( ( 𝑤 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑤 mod 𝑁 ) gcd 𝑁 ) = ( 𝑤 gcd 𝑁 ) ) |
| 68 |
22 41 67
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( ( 𝑤 mod 𝑁 ) gcd 𝑁 ) = ( 𝑤 gcd 𝑁 ) ) |
| 69 |
|
gcddvds |
⊢ ( ( 𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑤 gcd 𝑁 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 70 |
22 42 69
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( ( 𝑤 gcd 𝑁 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 71 |
70
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd 𝑁 ) ∥ 𝑤 ) |
| 72 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
| 73 |
|
simpr |
⊢ ( ( 𝑤 = 0 ∧ 𝑁 = 0 ) → 𝑁 = 0 ) |
| 74 |
73
|
necon3ai |
⊢ ( 𝑁 ≠ 0 → ¬ ( 𝑤 = 0 ∧ 𝑁 = 0 ) ) |
| 75 |
41 72 74
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ¬ ( 𝑤 = 0 ∧ 𝑁 = 0 ) ) |
| 76 |
|
gcdn0cl |
⊢ ( ( ( 𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑤 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑤 gcd 𝑁 ) ∈ ℕ ) |
| 77 |
22 42 75 76
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd 𝑁 ) ∈ ℕ ) |
| 78 |
77
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd 𝑁 ) ∈ ℤ ) |
| 79 |
70
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) |
| 80 |
|
dvdsmul2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∥ ( 𝑀 · 𝑁 ) ) |
| 81 |
29 42 80
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → 𝑁 ∥ ( 𝑀 · 𝑁 ) ) |
| 82 |
78 42 46 79 81
|
dvdstrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) |
| 83 |
|
dvdslegcd |
⊢ ( ( ( ( 𝑤 gcd 𝑁 ) ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) ∧ ¬ ( 𝑤 = 0 ∧ ( 𝑀 · 𝑁 ) = 0 ) ) → ( ( ( 𝑤 gcd 𝑁 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) → ( 𝑤 gcd 𝑁 ) ≤ ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) ) ) |
| 84 |
78 22 46 50 83
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( ( ( 𝑤 gcd 𝑁 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) → ( 𝑤 gcd 𝑁 ) ≤ ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) ) ) |
| 85 |
71 82 84
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd 𝑁 ) ≤ ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) ) |
| 86 |
85 55
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd 𝑁 ) ≤ 1 ) |
| 87 |
|
nnle1eq1 |
⊢ ( ( 𝑤 gcd 𝑁 ) ∈ ℕ → ( ( 𝑤 gcd 𝑁 ) ≤ 1 ↔ ( 𝑤 gcd 𝑁 ) = 1 ) ) |
| 88 |
77 87
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( ( 𝑤 gcd 𝑁 ) ≤ 1 ↔ ( 𝑤 gcd 𝑁 ) = 1 ) ) |
| 89 |
86 88
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 gcd 𝑁 ) = 1 ) |
| 90 |
68 89
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( ( 𝑤 mod 𝑁 ) gcd 𝑁 ) = 1 ) |
| 91 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑤 mod 𝑁 ) → ( 𝑦 gcd 𝑁 ) = ( ( 𝑤 mod 𝑁 ) gcd 𝑁 ) ) |
| 92 |
91
|
eqeq1d |
⊢ ( 𝑦 = ( 𝑤 mod 𝑁 ) → ( ( 𝑦 gcd 𝑁 ) = 1 ↔ ( ( 𝑤 mod 𝑁 ) gcd 𝑁 ) = 1 ) ) |
| 93 |
92 6
|
elrab2 |
⊢ ( ( 𝑤 mod 𝑁 ) ∈ 𝑉 ↔ ( ( 𝑤 mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( 𝑤 mod 𝑁 ) gcd 𝑁 ) = 1 ) ) |
| 94 |
66 90 93
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝑤 mod 𝑁 ) ∈ 𝑉 ) |
| 95 |
64 94
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → 〈 ( 𝑤 mod 𝑀 ) , ( 𝑤 mod 𝑁 ) 〉 ∈ ( 𝑈 × 𝑉 ) ) |
| 96 |
18 95
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝑈 × 𝑉 ) ) |
| 97 |
96
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑊 ( 𝐹 ‘ 𝑤 ) ∈ ( 𝑈 × 𝑉 ) ) |
| 98 |
1 2 3 4
|
crth |
⊢ ( 𝜑 → 𝐹 : 𝑆 –1-1-onto→ 𝑇 ) |
| 99 |
|
f1ofn |
⊢ ( 𝐹 : 𝑆 –1-1-onto→ 𝑇 → 𝐹 Fn 𝑆 ) |
| 100 |
|
fnfun |
⊢ ( 𝐹 Fn 𝑆 → Fun 𝐹 ) |
| 101 |
98 99 100
|
3syl |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 102 |
7
|
ssrab3 |
⊢ 𝑊 ⊆ 𝑆 |
| 103 |
|
fndm |
⊢ ( 𝐹 Fn 𝑆 → dom 𝐹 = 𝑆 ) |
| 104 |
98 99 103
|
3syl |
⊢ ( 𝜑 → dom 𝐹 = 𝑆 ) |
| 105 |
102 104
|
sseqtrrid |
⊢ ( 𝜑 → 𝑊 ⊆ dom 𝐹 ) |
| 106 |
|
funimass4 |
⊢ ( ( Fun 𝐹 ∧ 𝑊 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑊 ) ⊆ ( 𝑈 × 𝑉 ) ↔ ∀ 𝑤 ∈ 𝑊 ( 𝐹 ‘ 𝑤 ) ∈ ( 𝑈 × 𝑉 ) ) ) |
| 107 |
101 105 106
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 “ 𝑊 ) ⊆ ( 𝑈 × 𝑉 ) ↔ ∀ 𝑤 ∈ 𝑊 ( 𝐹 ‘ 𝑤 ) ∈ ( 𝑈 × 𝑉 ) ) ) |
| 108 |
97 107
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 “ 𝑊 ) ⊆ ( 𝑈 × 𝑉 ) ) |
| 109 |
5
|
ssrab3 |
⊢ 𝑈 ⊆ ( 0 ..^ 𝑀 ) |
| 110 |
6
|
ssrab3 |
⊢ 𝑉 ⊆ ( 0 ..^ 𝑁 ) |
| 111 |
|
xpss12 |
⊢ ( ( 𝑈 ⊆ ( 0 ..^ 𝑀 ) ∧ 𝑉 ⊆ ( 0 ..^ 𝑁 ) ) → ( 𝑈 × 𝑉 ) ⊆ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) ) |
| 112 |
109 110 111
|
mp2an |
⊢ ( 𝑈 × 𝑉 ) ⊆ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) |
| 113 |
112 2
|
sseqtrri |
⊢ ( 𝑈 × 𝑉 ) ⊆ 𝑇 |
| 114 |
113
|
sseli |
⊢ ( 𝑧 ∈ ( 𝑈 × 𝑉 ) → 𝑧 ∈ 𝑇 ) |
| 115 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑆 –1-1-onto→ 𝑇 ∧ 𝑧 ∈ 𝑇 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
| 116 |
98 114 115
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
| 117 |
|
f1ocnv |
⊢ ( 𝐹 : 𝑆 –1-1-onto→ 𝑇 → ◡ 𝐹 : 𝑇 –1-1-onto→ 𝑆 ) |
| 118 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝑇 –1-1-onto→ 𝑆 → ◡ 𝐹 : 𝑇 ⟶ 𝑆 ) |
| 119 |
98 117 118
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝑇 ⟶ 𝑆 ) |
| 120 |
|
ffvelcdm |
⊢ ( ( ◡ 𝐹 : 𝑇 ⟶ 𝑆 ∧ 𝑧 ∈ 𝑇 ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑆 ) |
| 121 |
119 114 120
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑆 ) |
| 122 |
121 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ) |
| 123 |
|
elfzoelz |
⊢ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
| 124 |
122 123
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
| 125 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → 𝑀 ∈ ℕ ) |
| 126 |
|
modgcd |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) gcd 𝑀 ) = ( ( ◡ 𝐹 ‘ 𝑧 ) gcd 𝑀 ) ) |
| 127 |
124 125 126
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) gcd 𝑀 ) = ( ( ◡ 𝐹 ‘ 𝑧 ) gcd 𝑀 ) ) |
| 128 |
|
oveq1 |
⊢ ( 𝑤 = ( ◡ 𝐹 ‘ 𝑧 ) → ( 𝑤 mod 𝑀 ) = ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) ) |
| 129 |
|
oveq1 |
⊢ ( 𝑤 = ( ◡ 𝐹 ‘ 𝑧 ) → ( 𝑤 mod 𝑁 ) = ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) ) |
| 130 |
128 129
|
opeq12d |
⊢ ( 𝑤 = ( ◡ 𝐹 ‘ 𝑧 ) → 〈 ( 𝑤 mod 𝑀 ) , ( 𝑤 mod 𝑁 ) 〉 = 〈 ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) , ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) 〉 ) |
| 131 |
14
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝑆 ↦ 〈 ( 𝑥 mod 𝑀 ) , ( 𝑥 mod 𝑁 ) 〉 ) = ( 𝑤 ∈ 𝑆 ↦ 〈 ( 𝑤 mod 𝑀 ) , ( 𝑤 mod 𝑁 ) 〉 ) |
| 132 |
3 131
|
eqtri |
⊢ 𝐹 = ( 𝑤 ∈ 𝑆 ↦ 〈 ( 𝑤 mod 𝑀 ) , ( 𝑤 mod 𝑁 ) 〉 ) |
| 133 |
|
opex |
⊢ 〈 ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) , ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) 〉 ∈ V |
| 134 |
130 132 133
|
fvmpt |
⊢ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑆 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 〈 ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) , ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) 〉 ) |
| 135 |
121 134
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 〈 ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) , ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) 〉 ) |
| 136 |
116 135
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → 𝑧 = 〈 ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) , ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) 〉 ) |
| 137 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → 𝑧 ∈ ( 𝑈 × 𝑉 ) ) |
| 138 |
136 137
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → 〈 ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) , ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) 〉 ∈ ( 𝑈 × 𝑉 ) ) |
| 139 |
|
opelxp |
⊢ ( 〈 ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) , ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) 〉 ∈ ( 𝑈 × 𝑉 ) ↔ ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) ∈ 𝑈 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) ∈ 𝑉 ) ) |
| 140 |
138 139
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) ∈ 𝑈 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) ∈ 𝑉 ) ) |
| 141 |
140
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) ∈ 𝑈 ) |
| 142 |
|
oveq1 |
⊢ ( 𝑦 = ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) → ( 𝑦 gcd 𝑀 ) = ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) gcd 𝑀 ) ) |
| 143 |
142
|
eqeq1d |
⊢ ( 𝑦 = ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) → ( ( 𝑦 gcd 𝑀 ) = 1 ↔ ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) gcd 𝑀 ) = 1 ) ) |
| 144 |
143 5
|
elrab2 |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) ∈ 𝑈 ↔ ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) ∈ ( 0 ..^ 𝑀 ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) gcd 𝑀 ) = 1 ) ) |
| 145 |
141 144
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) ∈ ( 0 ..^ 𝑀 ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) gcd 𝑀 ) = 1 ) ) |
| 146 |
145
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑀 ) gcd 𝑀 ) = 1 ) |
| 147 |
127 146
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ( ◡ 𝐹 ‘ 𝑧 ) gcd 𝑀 ) = 1 ) |
| 148 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → 𝑁 ∈ ℕ ) |
| 149 |
|
modgcd |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) gcd 𝑁 ) = ( ( ◡ 𝐹 ‘ 𝑧 ) gcd 𝑁 ) ) |
| 150 |
124 148 149
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) gcd 𝑁 ) = ( ( ◡ 𝐹 ‘ 𝑧 ) gcd 𝑁 ) ) |
| 151 |
140
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) ∈ 𝑉 ) |
| 152 |
|
oveq1 |
⊢ ( 𝑦 = ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) → ( 𝑦 gcd 𝑁 ) = ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) gcd 𝑁 ) ) |
| 153 |
152
|
eqeq1d |
⊢ ( 𝑦 = ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) → ( ( 𝑦 gcd 𝑁 ) = 1 ↔ ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) gcd 𝑁 ) = 1 ) ) |
| 154 |
153 6
|
elrab2 |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) ∈ 𝑉 ↔ ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) gcd 𝑁 ) = 1 ) ) |
| 155 |
151 154
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) gcd 𝑁 ) = 1 ) ) |
| 156 |
155
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑧 ) mod 𝑁 ) gcd 𝑁 ) = 1 ) |
| 157 |
150 156
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ( ◡ 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) |
| 158 |
23
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 159 |
158
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → 𝑀 ∈ ℤ ) |
| 160 |
40
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 161 |
160
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → 𝑁 ∈ ℤ ) |
| 162 |
|
rpmul |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( ◡ 𝐹 ‘ 𝑧 ) gcd 𝑀 ) = 1 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) → ( ( ◡ 𝐹 ‘ 𝑧 ) gcd ( 𝑀 · 𝑁 ) ) = 1 ) ) |
| 163 |
124 159 161 162
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ( ( ( ◡ 𝐹 ‘ 𝑧 ) gcd 𝑀 ) = 1 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) → ( ( ◡ 𝐹 ‘ 𝑧 ) gcd ( 𝑀 · 𝑁 ) ) = 1 ) ) |
| 164 |
147 157 163
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ( ◡ 𝐹 ‘ 𝑧 ) gcd ( 𝑀 · 𝑁 ) ) = 1 ) |
| 165 |
|
oveq1 |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( 𝑦 gcd ( 𝑀 · 𝑁 ) ) = ( ( ◡ 𝐹 ‘ 𝑧 ) gcd ( 𝑀 · 𝑁 ) ) ) |
| 166 |
165
|
eqeq1d |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑧 ) → ( ( 𝑦 gcd ( 𝑀 · 𝑁 ) ) = 1 ↔ ( ( ◡ 𝐹 ‘ 𝑧 ) gcd ( 𝑀 · 𝑁 ) ) = 1 ) ) |
| 167 |
166 7
|
elrab2 |
⊢ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑊 ↔ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑆 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) gcd ( 𝑀 · 𝑁 ) ) = 1 ) ) |
| 168 |
121 164 167
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑊 ) |
| 169 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ 𝑊 ⊆ dom 𝐹 ) → ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑊 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑊 ) ) ) |
| 170 |
101 105 169
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑊 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑊 ) ) ) |
| 171 |
170
|
imp |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑊 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑊 ) ) |
| 172 |
168 171
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑊 ) ) |
| 173 |
116 172
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑈 × 𝑉 ) ) → 𝑧 ∈ ( 𝐹 “ 𝑊 ) ) |
| 174 |
108 173
|
eqelssd |
⊢ ( 𝜑 → ( 𝐹 “ 𝑊 ) = ( 𝑈 × 𝑉 ) ) |
| 175 |
|
f1of1 |
⊢ ( 𝐹 : 𝑆 –1-1-onto→ 𝑇 → 𝐹 : 𝑆 –1-1→ 𝑇 ) |
| 176 |
98 175
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑆 –1-1→ 𝑇 ) |
| 177 |
|
fzofi |
⊢ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ∈ Fin |
| 178 |
1 177
|
eqeltri |
⊢ 𝑆 ∈ Fin |
| 179 |
|
ssfi |
⊢ ( ( 𝑆 ∈ Fin ∧ 𝑊 ⊆ 𝑆 ) → 𝑊 ∈ Fin ) |
| 180 |
178 102 179
|
mp2an |
⊢ 𝑊 ∈ Fin |
| 181 |
180
|
elexi |
⊢ 𝑊 ∈ V |
| 182 |
181
|
f1imaen |
⊢ ( ( 𝐹 : 𝑆 –1-1→ 𝑇 ∧ 𝑊 ⊆ 𝑆 ) → ( 𝐹 “ 𝑊 ) ≈ 𝑊 ) |
| 183 |
176 102 182
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 “ 𝑊 ) ≈ 𝑊 ) |
| 184 |
174 183
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑈 × 𝑉 ) ≈ 𝑊 ) |
| 185 |
|
fzofi |
⊢ ( 0 ..^ 𝑀 ) ∈ Fin |
| 186 |
|
ssrab2 |
⊢ { 𝑦 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑦 gcd 𝑀 ) = 1 } ⊆ ( 0 ..^ 𝑀 ) |
| 187 |
|
ssfi |
⊢ ( ( ( 0 ..^ 𝑀 ) ∈ Fin ∧ { 𝑦 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑦 gcd 𝑀 ) = 1 } ⊆ ( 0 ..^ 𝑀 ) ) → { 𝑦 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑦 gcd 𝑀 ) = 1 } ∈ Fin ) |
| 188 |
185 186 187
|
mp2an |
⊢ { 𝑦 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑦 gcd 𝑀 ) = 1 } ∈ Fin |
| 189 |
5 188
|
eqeltri |
⊢ 𝑈 ∈ Fin |
| 190 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
| 191 |
|
ssrab2 |
⊢ { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } ⊆ ( 0 ..^ 𝑁 ) |
| 192 |
|
ssfi |
⊢ ( ( ( 0 ..^ 𝑁 ) ∈ Fin ∧ { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } ⊆ ( 0 ..^ 𝑁 ) ) → { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } ∈ Fin ) |
| 193 |
190 191 192
|
mp2an |
⊢ { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } ∈ Fin |
| 194 |
6 193
|
eqeltri |
⊢ 𝑉 ∈ Fin |
| 195 |
|
xpfi |
⊢ ( ( 𝑈 ∈ Fin ∧ 𝑉 ∈ Fin ) → ( 𝑈 × 𝑉 ) ∈ Fin ) |
| 196 |
189 194 195
|
mp2an |
⊢ ( 𝑈 × 𝑉 ) ∈ Fin |
| 197 |
|
hashen |
⊢ ( ( ( 𝑈 × 𝑉 ) ∈ Fin ∧ 𝑊 ∈ Fin ) → ( ( ♯ ‘ ( 𝑈 × 𝑉 ) ) = ( ♯ ‘ 𝑊 ) ↔ ( 𝑈 × 𝑉 ) ≈ 𝑊 ) ) |
| 198 |
196 180 197
|
mp2an |
⊢ ( ( ♯ ‘ ( 𝑈 × 𝑉 ) ) = ( ♯ ‘ 𝑊 ) ↔ ( 𝑈 × 𝑉 ) ≈ 𝑊 ) |
| 199 |
184 198
|
sylibr |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑈 × 𝑉 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 200 |
|
hashxp |
⊢ ( ( 𝑈 ∈ Fin ∧ 𝑉 ∈ Fin ) → ( ♯ ‘ ( 𝑈 × 𝑉 ) ) = ( ( ♯ ‘ 𝑈 ) · ( ♯ ‘ 𝑉 ) ) ) |
| 201 |
189 194 200
|
mp2an |
⊢ ( ♯ ‘ ( 𝑈 × 𝑉 ) ) = ( ( ♯ ‘ 𝑈 ) · ( ♯ ‘ 𝑉 ) ) |
| 202 |
199 201
|
eqtr3di |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) = ( ( ♯ ‘ 𝑈 ) · ( ♯ ‘ 𝑉 ) ) ) |
| 203 |
23 40
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑁 ) ∈ ℕ ) |
| 204 |
|
dfphi2 |
⊢ ( ( 𝑀 · 𝑁 ) ∈ ℕ → ( ϕ ‘ ( 𝑀 · 𝑁 ) ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 · 𝑁 ) ) = 1 } ) ) |
| 205 |
1
|
rabeqi |
⊢ { 𝑦 ∈ 𝑆 ∣ ( 𝑦 gcd ( 𝑀 · 𝑁 ) ) = 1 } = { 𝑦 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 · 𝑁 ) ) = 1 } |
| 206 |
7 205
|
eqtri |
⊢ 𝑊 = { 𝑦 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 · 𝑁 ) ) = 1 } |
| 207 |
206
|
fveq2i |
⊢ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ∣ ( 𝑦 gcd ( 𝑀 · 𝑁 ) ) = 1 } ) |
| 208 |
204 207
|
eqtr4di |
⊢ ( ( 𝑀 · 𝑁 ) ∈ ℕ → ( ϕ ‘ ( 𝑀 · 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 209 |
203 208
|
syl |
⊢ ( 𝜑 → ( ϕ ‘ ( 𝑀 · 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 210 |
|
dfphi2 |
⊢ ( 𝑀 ∈ ℕ → ( ϕ ‘ 𝑀 ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑦 gcd 𝑀 ) = 1 } ) ) |
| 211 |
5
|
fveq2i |
⊢ ( ♯ ‘ 𝑈 ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑦 gcd 𝑀 ) = 1 } ) |
| 212 |
210 211
|
eqtr4di |
⊢ ( 𝑀 ∈ ℕ → ( ϕ ‘ 𝑀 ) = ( ♯ ‘ 𝑈 ) ) |
| 213 |
23 212
|
syl |
⊢ ( 𝜑 → ( ϕ ‘ 𝑀 ) = ( ♯ ‘ 𝑈 ) ) |
| 214 |
|
dfphi2 |
⊢ ( 𝑁 ∈ ℕ → ( ϕ ‘ 𝑁 ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } ) ) |
| 215 |
6
|
fveq2i |
⊢ ( ♯ ‘ 𝑉 ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } ) |
| 216 |
214 215
|
eqtr4di |
⊢ ( 𝑁 ∈ ℕ → ( ϕ ‘ 𝑁 ) = ( ♯ ‘ 𝑉 ) ) |
| 217 |
40 216
|
syl |
⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) = ( ♯ ‘ 𝑉 ) ) |
| 218 |
213 217
|
oveq12d |
⊢ ( 𝜑 → ( ( ϕ ‘ 𝑀 ) · ( ϕ ‘ 𝑁 ) ) = ( ( ♯ ‘ 𝑈 ) · ( ♯ ‘ 𝑉 ) ) ) |
| 219 |
202 209 218
|
3eqtr4d |
⊢ ( 𝜑 → ( ϕ ‘ ( 𝑀 · 𝑁 ) ) = ( ( ϕ ‘ 𝑀 ) · ( ϕ ‘ 𝑁 ) ) ) |