Step |
Hyp |
Ref |
Expression |
1 |
|
1nn |
⊢ 1 ∈ ℕ |
2 |
|
phiprmpw |
⊢ ( ( 𝑃 ∈ ℙ ∧ 1 ∈ ℕ ) → ( ϕ ‘ ( 𝑃 ↑ 1 ) ) = ( ( 𝑃 ↑ ( 1 − 1 ) ) · ( 𝑃 − 1 ) ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝑃 ∈ ℙ → ( ϕ ‘ ( 𝑃 ↑ 1 ) ) = ( ( 𝑃 ↑ ( 1 − 1 ) ) · ( 𝑃 − 1 ) ) ) |
4 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
5 |
4
|
zcnd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
6 |
5
|
exp1d |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 1 ) = 𝑃 ) |
7 |
6
|
fveq2d |
⊢ ( 𝑃 ∈ ℙ → ( ϕ ‘ ( 𝑃 ↑ 1 ) ) = ( ϕ ‘ 𝑃 ) ) |
8 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
9 |
8
|
oveq2i |
⊢ ( 𝑃 ↑ ( 1 − 1 ) ) = ( 𝑃 ↑ 0 ) |
10 |
5
|
exp0d |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 0 ) = 1 ) |
11 |
9 10
|
eqtrid |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ ( 1 − 1 ) ) = 1 ) |
12 |
11
|
oveq1d |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 ↑ ( 1 − 1 ) ) · ( 𝑃 − 1 ) ) = ( 1 · ( 𝑃 − 1 ) ) ) |
13 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
14 |
|
subcl |
⊢ ( ( 𝑃 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑃 − 1 ) ∈ ℂ ) |
15 |
5 13 14
|
sylancl |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 − 1 ) ∈ ℂ ) |
16 |
15
|
mulid2d |
⊢ ( 𝑃 ∈ ℙ → ( 1 · ( 𝑃 − 1 ) ) = ( 𝑃 − 1 ) ) |
17 |
12 16
|
eqtrd |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 ↑ ( 1 − 1 ) ) · ( 𝑃 − 1 ) ) = ( 𝑃 − 1 ) ) |
18 |
3 7 17
|
3eqtr3d |
⊢ ( 𝑃 ∈ ℙ → ( ϕ ‘ 𝑃 ) = ( 𝑃 − 1 ) ) |