Step |
Hyp |
Ref |
Expression |
1 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
2 |
|
nnnn0 |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ0 ) |
3 |
|
nnexpcl |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐾 ) ∈ ℕ ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) ∈ ℕ ) |
5 |
|
phival |
⊢ ( ( 𝑃 ↑ 𝐾 ) ∈ ℕ → ( ϕ ‘ ( 𝑃 ↑ 𝐾 ) ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ϕ ‘ ( 𝑃 ↑ 𝐾 ) ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ) |
7 |
|
nnm1nn0 |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 − 1 ) ∈ ℕ0 ) |
8 |
|
nnexpcl |
⊢ ( ( 𝑃 ∈ ℕ ∧ ( 𝐾 − 1 ) ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝐾 − 1 ) ) ∈ ℕ ) |
9 |
1 7 8
|
syl2an |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ ( 𝐾 − 1 ) ) ∈ ℕ ) |
10 |
9
|
nncnd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ ( 𝐾 − 1 ) ) ∈ ℂ ) |
11 |
1
|
nncnd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
12 |
11
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 𝑃 ∈ ℂ ) |
13 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
14 |
|
subdi |
⊢ ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · ( 𝑃 − 1 ) ) = ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) − ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 1 ) ) ) |
15 |
13 14
|
mp3an3 |
⊢ ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) ∈ ℂ ∧ 𝑃 ∈ ℂ ) → ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · ( 𝑃 − 1 ) ) = ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) − ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 1 ) ) ) |
16 |
10 12 15
|
syl2anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · ( 𝑃 − 1 ) ) = ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) − ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 1 ) ) ) |
17 |
10
|
mulid1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 1 ) = ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) |
18 |
17
|
oveq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) − ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 1 ) ) = ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) − ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) ) |
19 |
|
fzfi |
⊢ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∈ Fin |
20 |
|
ssrab2 |
⊢ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ⊆ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) |
21 |
|
ssfi |
⊢ ( ( ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∈ Fin ∧ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ⊆ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) → { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∈ Fin ) |
22 |
19 20 21
|
mp2an |
⊢ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∈ Fin |
23 |
|
ssrab2 |
⊢ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ⊆ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) |
24 |
|
ssfi |
⊢ ( ( ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∈ Fin ∧ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ⊆ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) → { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ∈ Fin ) |
25 |
19 23 24
|
mp2an |
⊢ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ∈ Fin |
26 |
|
inrab |
⊢ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∩ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) = { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∧ 𝑃 ∥ ( 𝑥 − 0 ) ) } |
27 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) → 𝑥 ∈ ℤ ) |
28 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
29 |
|
rpexp |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ∈ ℕ ) → ( ( ( 𝑃 ↑ 𝐾 ) gcd 𝑥 ) = 1 ↔ ( 𝑃 gcd 𝑥 ) = 1 ) ) |
30 |
28 29
|
syl3an1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ∈ ℕ ) → ( ( ( 𝑃 ↑ 𝐾 ) gcd 𝑥 ) = 1 ↔ ( 𝑃 gcd 𝑥 ) = 1 ) ) |
31 |
30
|
3expa |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ) ∧ 𝐾 ∈ ℕ ) → ( ( ( 𝑃 ↑ 𝐾 ) gcd 𝑥 ) = 1 ↔ ( 𝑃 gcd 𝑥 ) = 1 ) ) |
32 |
31
|
an32s |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( ( ( 𝑃 ↑ 𝐾 ) gcd 𝑥 ) = 1 ↔ ( 𝑃 gcd 𝑥 ) = 1 ) ) |
33 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℤ ) |
34 |
|
zexpcl |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐾 ) ∈ ℤ ) |
35 |
28 2 34
|
syl2an |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) ∈ ℤ ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( 𝑃 ↑ 𝐾 ) ∈ ℤ ) |
37 |
33 36
|
gcdcomd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = ( ( 𝑃 ↑ 𝐾 ) gcd 𝑥 ) ) |
38 |
37
|
eqeq1d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ↔ ( ( 𝑃 ↑ 𝐾 ) gcd 𝑥 ) = 1 ) ) |
39 |
|
coprm |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑥 ↔ ( 𝑃 gcd 𝑥 ) = 1 ) ) |
40 |
39
|
adantlr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑥 ↔ ( 𝑃 gcd 𝑥 ) = 1 ) ) |
41 |
32 38 40
|
3bitr4d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ↔ ¬ 𝑃 ∥ 𝑥 ) ) |
42 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
43 |
42
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℂ ) |
44 |
43
|
subid1d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 − 0 ) = 𝑥 ) |
45 |
44
|
breq2d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑥 − 0 ) ↔ 𝑃 ∥ 𝑥 ) ) |
46 |
45
|
notbid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( ¬ 𝑃 ∥ ( 𝑥 − 0 ) ↔ ¬ 𝑃 ∥ 𝑥 ) ) |
47 |
41 46
|
bitr4d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ↔ ¬ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
48 |
27 47
|
sylan2 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) → ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ↔ ¬ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
49 |
48
|
biimpd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) → ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 → ¬ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
50 |
|
imnan |
⊢ ( ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 → ¬ 𝑃 ∥ ( 𝑥 − 0 ) ) ↔ ¬ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∧ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
51 |
49 50
|
sylib |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) → ¬ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∧ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
52 |
51
|
ralrimiva |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ∀ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ¬ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∧ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
53 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∧ 𝑃 ∥ ( 𝑥 − 0 ) ) } = ∅ ↔ ∀ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ¬ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∧ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
54 |
52 53
|
sylibr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∧ 𝑃 ∥ ( 𝑥 − 0 ) ) } = ∅ ) |
55 |
26 54
|
eqtrid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∩ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) = ∅ ) |
56 |
|
hashun |
⊢ ( ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∈ Fin ∧ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ∈ Fin ∧ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∩ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∪ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) ) = ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) ) ) |
57 |
22 25 55 56
|
mp3an12i |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∪ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) ) = ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) ) ) |
58 |
|
unrab |
⊢ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∪ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) = { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∨ 𝑃 ∥ ( 𝑥 − 0 ) ) } |
59 |
48
|
biimprd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) → ( ¬ 𝑃 ∥ ( 𝑥 − 0 ) → ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ) ) |
60 |
59
|
con1d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) → ( ¬ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 → 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
61 |
60
|
orrd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) → ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∨ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
62 |
61
|
ralrimiva |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ∀ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∨ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
63 |
|
rabid2 |
⊢ ( ( 1 ... ( 𝑃 ↑ 𝐾 ) ) = { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∨ 𝑃 ∥ ( 𝑥 − 0 ) ) } ↔ ∀ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∨ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
64 |
62 63
|
sylibr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 1 ... ( 𝑃 ↑ 𝐾 ) ) = { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∨ 𝑃 ∥ ( 𝑥 − 0 ) ) } ) |
65 |
58 64
|
eqtr4id |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∪ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) = ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) |
66 |
65
|
fveq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∪ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) ) = ( ♯ ‘ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) ) |
67 |
4
|
nnnn0d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) ∈ ℕ0 ) |
68 |
|
hashfz1 |
⊢ ( ( 𝑃 ↑ 𝐾 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) = ( 𝑃 ↑ 𝐾 ) ) |
69 |
67 68
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) = ( 𝑃 ↑ 𝐾 ) ) |
70 |
|
expm1t |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) ) |
71 |
11 70
|
sylan |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) ) |
72 |
66 69 71
|
3eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∪ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) ) |
73 |
1
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 𝑃 ∈ ℕ ) |
74 |
|
1zzd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 1 ∈ ℤ ) |
75 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
76 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
77 |
76
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 1 − 1 ) ) = ( ℤ≥ ‘ 0 ) |
78 |
75 77
|
eqtr4i |
⊢ ℕ0 = ( ℤ≥ ‘ ( 1 − 1 ) ) |
79 |
67 78
|
eleqtrdi |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) |
80 |
|
0zd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 0 ∈ ℤ ) |
81 |
73 74 79 80
|
hashdvds |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) = ( ( ⌊ ‘ ( ( ( 𝑃 ↑ 𝐾 ) − 0 ) / 𝑃 ) ) − ( ⌊ ‘ ( ( ( 1 − 1 ) − 0 ) / 𝑃 ) ) ) ) |
82 |
4
|
nncnd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) ∈ ℂ ) |
83 |
82
|
subid1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑃 ↑ 𝐾 ) − 0 ) = ( 𝑃 ↑ 𝐾 ) ) |
84 |
83
|
oveq1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ( 𝑃 ↑ 𝐾 ) − 0 ) / 𝑃 ) = ( ( 𝑃 ↑ 𝐾 ) / 𝑃 ) ) |
85 |
73
|
nnne0d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 𝑃 ≠ 0 ) |
86 |
|
nnz |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) |
87 |
86
|
adantl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 𝐾 ∈ ℤ ) |
88 |
12 85 87
|
expm1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ ( 𝐾 − 1 ) ) = ( ( 𝑃 ↑ 𝐾 ) / 𝑃 ) ) |
89 |
84 88
|
eqtr4d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ( 𝑃 ↑ 𝐾 ) − 0 ) / 𝑃 ) = ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) |
90 |
89
|
fveq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ⌊ ‘ ( ( ( 𝑃 ↑ 𝐾 ) − 0 ) / 𝑃 ) ) = ( ⌊ ‘ ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) ) |
91 |
9
|
nnzd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ ( 𝐾 − 1 ) ) ∈ ℤ ) |
92 |
|
flid |
⊢ ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) ∈ ℤ → ( ⌊ ‘ ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) = ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) |
93 |
91 92
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ⌊ ‘ ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) = ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) |
94 |
90 93
|
eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ⌊ ‘ ( ( ( 𝑃 ↑ 𝐾 ) − 0 ) / 𝑃 ) ) = ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) |
95 |
76
|
oveq1i |
⊢ ( ( 1 − 1 ) − 0 ) = ( 0 − 0 ) |
96 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
97 |
95 96
|
eqtri |
⊢ ( ( 1 − 1 ) − 0 ) = 0 |
98 |
97
|
oveq1i |
⊢ ( ( ( 1 − 1 ) − 0 ) / 𝑃 ) = ( 0 / 𝑃 ) |
99 |
12 85
|
div0d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 0 / 𝑃 ) = 0 ) |
100 |
98 99
|
eqtrid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ( 1 − 1 ) − 0 ) / 𝑃 ) = 0 ) |
101 |
100
|
fveq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ⌊ ‘ ( ( ( 1 − 1 ) − 0 ) / 𝑃 ) ) = ( ⌊ ‘ 0 ) ) |
102 |
|
0z |
⊢ 0 ∈ ℤ |
103 |
|
flid |
⊢ ( 0 ∈ ℤ → ( ⌊ ‘ 0 ) = 0 ) |
104 |
102 103
|
ax-mp |
⊢ ( ⌊ ‘ 0 ) = 0 |
105 |
101 104
|
eqtrdi |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ⌊ ‘ ( ( ( 1 − 1 ) − 0 ) / 𝑃 ) ) = 0 ) |
106 |
94 105
|
oveq12d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ⌊ ‘ ( ( ( 𝑃 ↑ 𝐾 ) − 0 ) / 𝑃 ) ) − ( ⌊ ‘ ( ( ( 1 − 1 ) − 0 ) / 𝑃 ) ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) − 0 ) ) |
107 |
10
|
subid1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) − 0 ) = ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) |
108 |
81 106 107
|
3eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) = ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) |
109 |
108
|
oveq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) ) = ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) + ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) ) |
110 |
|
hashcl |
⊢ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∈ Fin → ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ∈ ℕ0 ) |
111 |
22 110
|
ax-mp |
⊢ ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ∈ ℕ0 |
112 |
111
|
nn0cni |
⊢ ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ∈ ℂ |
113 |
|
addcom |
⊢ ( ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ∈ ℂ ∧ ( 𝑃 ↑ ( 𝐾 − 1 ) ) ∈ ℂ ) → ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) + ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ) ) |
114 |
112 10 113
|
sylancr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) + ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ) ) |
115 |
109 114
|
eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ) ) |
116 |
57 72 115
|
3eqtr3rd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) ) |
117 |
10 12
|
mulcld |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) ∈ ℂ ) |
118 |
112
|
a1i |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ∈ ℂ ) |
119 |
117 10 118
|
subaddd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) − ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ↔ ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) ) ) |
120 |
116 119
|
mpbird |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) − ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ) |
121 |
16 18 120
|
3eqtrrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · ( 𝑃 − 1 ) ) ) |
122 |
6 121
|
eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ϕ ‘ ( 𝑃 ↑ 𝐾 ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · ( 𝑃 − 1 ) ) ) |