Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁 ) ) |
2 |
1
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝑁 ) ) |
3 |
|
hashgcdeq |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ♯ ‘ { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ) = if ( 𝑦 ∥ 𝑁 , ( ϕ ‘ ( 𝑁 / 𝑦 ) ) , 0 ) ) |
4 |
3
|
adantrr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝑁 ) ) → ( ♯ ‘ { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ) = if ( 𝑦 ∥ 𝑁 , ( ϕ ‘ ( 𝑁 / 𝑦 ) ) , 0 ) ) |
5 |
|
iftrue |
⊢ ( 𝑦 ∥ 𝑁 → if ( 𝑦 ∥ 𝑁 , ( ϕ ‘ ( 𝑁 / 𝑦 ) ) , 0 ) = ( ϕ ‘ ( 𝑁 / 𝑦 ) ) ) |
6 |
5
|
ad2antll |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝑁 ) ) → if ( 𝑦 ∥ 𝑁 , ( ϕ ‘ ( 𝑁 / 𝑦 ) ) , 0 ) = ( ϕ ‘ ( 𝑁 / 𝑦 ) ) ) |
7 |
4 6
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝑁 ) ) → ( ♯ ‘ { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ) = ( ϕ ‘ ( 𝑁 / 𝑦 ) ) ) |
8 |
2 7
|
sylan2b |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ♯ ‘ { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ) = ( ϕ ‘ ( 𝑁 / 𝑦 ) ) ) |
9 |
8
|
sumeq2dv |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ♯ ‘ { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ) = Σ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ϕ ‘ ( 𝑁 / 𝑦 ) ) ) |
10 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
11 |
|
dvdsssfz1 |
⊢ ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
12 |
|
ssfi |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∈ Fin ) |
13 |
10 11 12
|
sylancr |
⊢ ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∈ Fin ) |
14 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
15 |
|
ssrab2 |
⊢ { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ⊆ ( 0 ..^ 𝑁 ) |
16 |
|
ssfi |
⊢ ( ( ( 0 ..^ 𝑁 ) ∈ Fin ∧ { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ⊆ ( 0 ..^ 𝑁 ) ) → { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ∈ Fin ) |
17 |
14 15 16
|
mp2an |
⊢ { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ∈ Fin |
18 |
17
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ∈ Fin ) |
19 |
|
oveq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 gcd 𝑁 ) = ( 𝑤 gcd 𝑁 ) ) |
20 |
19
|
eqeq1d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑧 gcd 𝑁 ) = 𝑦 ↔ ( 𝑤 gcd 𝑁 ) = 𝑦 ) ) |
21 |
20
|
elrab |
⊢ ( 𝑤 ∈ { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ↔ ( 𝑤 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝑤 gcd 𝑁 ) = 𝑦 ) ) |
22 |
21
|
simprbi |
⊢ ( 𝑤 ∈ { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } → ( 𝑤 gcd 𝑁 ) = 𝑦 ) |
23 |
22
|
rgen |
⊢ ∀ 𝑤 ∈ { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ( 𝑤 gcd 𝑁 ) = 𝑦 |
24 |
23
|
rgenw |
⊢ ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑤 ∈ { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ( 𝑤 gcd 𝑁 ) = 𝑦 |
25 |
|
invdisj |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑤 ∈ { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ( 𝑤 gcd 𝑁 ) = 𝑦 → Disj 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ) |
26 |
24 25
|
mp1i |
⊢ ( 𝑁 ∈ ℕ → Disj 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ) |
27 |
13 18 26
|
hashiun |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ∪ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ) = Σ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ♯ ‘ { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ) ) |
28 |
|
fveq2 |
⊢ ( 𝑑 = ( 𝑁 / 𝑦 ) → ( ϕ ‘ 𝑑 ) = ( ϕ ‘ ( 𝑁 / 𝑦 ) ) ) |
29 |
|
eqid |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } |
30 |
|
eqid |
⊢ ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) = ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) |
31 |
29 30
|
dvdsflip |
⊢ ( 𝑁 ∈ ℕ → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
32 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑁 / 𝑧 ) = ( 𝑁 / 𝑦 ) ) |
33 |
|
ovex |
⊢ ( 𝑁 / 𝑦 ) ∈ V |
34 |
32 30 33
|
fvmpt |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) ‘ 𝑦 ) = ( 𝑁 / 𝑦 ) ) |
35 |
34
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) ‘ 𝑦 ) = ( 𝑁 / 𝑦 ) ) |
36 |
|
elrabi |
⊢ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → 𝑑 ∈ ℕ ) |
37 |
36
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑑 ∈ ℕ ) |
38 |
37
|
phicld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ϕ ‘ 𝑑 ) ∈ ℕ ) |
39 |
38
|
nncnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ϕ ‘ 𝑑 ) ∈ ℂ ) |
40 |
28 13 31 35 39
|
fsumf1o |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ϕ ‘ 𝑑 ) = Σ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ϕ ‘ ( 𝑁 / 𝑦 ) ) ) |
41 |
9 27 40
|
3eqtr4rd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ϕ ‘ 𝑑 ) = ( ♯ ‘ ∪ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ) ) |
42 |
|
iunrab |
⊢ ∪ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } = { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ∃ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( 𝑧 gcd 𝑁 ) = 𝑦 } |
43 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑧 gcd 𝑁 ) → ( 𝑥 ∥ 𝑁 ↔ ( 𝑧 gcd 𝑁 ) ∥ 𝑁 ) ) |
44 |
|
elfzoelz |
⊢ ( 𝑧 ∈ ( 0 ..^ 𝑁 ) → 𝑧 ∈ ℤ ) |
45 |
44
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ..^ 𝑁 ) ) → 𝑧 ∈ ℤ ) |
46 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
47 |
46
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ..^ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
48 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
49 |
48
|
neneqd |
⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 = 0 ) |
50 |
49
|
intnand |
⊢ ( 𝑁 ∈ ℕ → ¬ ( 𝑧 = 0 ∧ 𝑁 = 0 ) ) |
51 |
50
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ..^ 𝑁 ) ) → ¬ ( 𝑧 = 0 ∧ 𝑁 = 0 ) ) |
52 |
|
gcdn0cl |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑧 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑧 gcd 𝑁 ) ∈ ℕ ) |
53 |
45 47 51 52
|
syl21anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑧 gcd 𝑁 ) ∈ ℕ ) |
54 |
|
gcddvds |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑧 gcd 𝑁 ) ∥ 𝑧 ∧ ( 𝑧 gcd 𝑁 ) ∥ 𝑁 ) ) |
55 |
45 47 54
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑧 gcd 𝑁 ) ∥ 𝑧 ∧ ( 𝑧 gcd 𝑁 ) ∥ 𝑁 ) ) |
56 |
55
|
simprd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑧 gcd 𝑁 ) ∥ 𝑁 ) |
57 |
43 53 56
|
elrabd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑧 gcd 𝑁 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
58 |
|
clel5 |
⊢ ( ( 𝑧 gcd 𝑁 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↔ ∃ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( 𝑧 gcd 𝑁 ) = 𝑦 ) |
59 |
57 58
|
sylib |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( 𝑧 gcd 𝑁 ) = 𝑦 ) |
60 |
59
|
ralrimiva |
⊢ ( 𝑁 ∈ ℕ → ∀ 𝑧 ∈ ( 0 ..^ 𝑁 ) ∃ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( 𝑧 gcd 𝑁 ) = 𝑦 ) |
61 |
|
rabid2 |
⊢ ( ( 0 ..^ 𝑁 ) = { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ∃ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( 𝑧 gcd 𝑁 ) = 𝑦 } ↔ ∀ 𝑧 ∈ ( 0 ..^ 𝑁 ) ∃ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( 𝑧 gcd 𝑁 ) = 𝑦 ) |
62 |
60 61
|
sylibr |
⊢ ( 𝑁 ∈ ℕ → ( 0 ..^ 𝑁 ) = { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ∃ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( 𝑧 gcd 𝑁 ) = 𝑦 } ) |
63 |
42 62
|
eqtr4id |
⊢ ( 𝑁 ∈ ℕ → ∪ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } = ( 0 ..^ 𝑁 ) ) |
64 |
63
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ∪ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
65 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
66 |
|
hashfzo0 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
67 |
65 66
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
68 |
64 67
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ∪ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } { 𝑧 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑧 gcd 𝑁 ) = 𝑦 } ) = 𝑁 ) |
69 |
41 68
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ϕ ‘ 𝑑 ) = 𝑁 ) |