Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 gcd 𝑛 ) = ( 𝑥 gcd 𝑁 ) ) |
3 |
2
|
eqeq1d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑥 gcd 𝑛 ) = 1 ↔ ( 𝑥 gcd 𝑁 ) = 1 ) ) |
4 |
1 3
|
rabeqbidv |
⊢ ( 𝑛 = 𝑁 → { 𝑥 ∈ ( 1 ... 𝑛 ) ∣ ( 𝑥 gcd 𝑛 ) = 1 } = { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) |
5 |
4
|
fveq2d |
⊢ ( 𝑛 = 𝑁 → ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑛 ) ∣ ( 𝑥 gcd 𝑛 ) = 1 } ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ) |
6 |
|
df-phi |
⊢ ϕ = ( 𝑛 ∈ ℕ ↦ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑛 ) ∣ ( 𝑥 gcd 𝑛 ) = 1 } ) ) |
7 |
|
fvex |
⊢ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ∈ V |
8 |
5 6 7
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ → ( ϕ ‘ 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ) |