| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ipffn.1 | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ipffn.2 | ⊢  ,   =  ( ·if ‘ 𝑊 ) | 
						
							| 3 |  | phlipf.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | phlipf.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 5 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 6 | 3 5 1 4 | ipcl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  𝐾 ) | 
						
							| 7 | 6 | 3expb | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 ) )  →  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  𝐾 ) | 
						
							| 8 | 7 | ralrimivva | ⊢ ( 𝑊  ∈  PreHil  →  ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  𝐾 ) | 
						
							| 9 | 1 5 2 | ipffval | ⊢  ,   =  ( 𝑥  ∈  𝑉 ,  𝑦  ∈  𝑉  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 10 | 9 | fmpo | ⊢ ( ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  𝐾  ↔   ,  : ( 𝑉  ×  𝑉 ) ⟶ 𝐾 ) | 
						
							| 11 | 8 10 | sylib | ⊢ ( 𝑊  ∈  PreHil  →   ,  : ( 𝑉  ×  𝑉 ) ⟶ 𝐾 ) |