Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
phllmhm.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
phllmhm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
phllmhm.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐴 ) ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) |
7 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
8 |
3 1 2 5 6 7
|
isphl |
⊢ ( 𝑊 ∈ PreHil ↔ ( 𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀ 𝑦 ∈ 𝑉 ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) → 𝑦 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑦 , 𝑥 ) ) = ( 𝑥 , 𝑦 ) ) ) ) |
9 |
8
|
simp3bi |
⊢ ( 𝑊 ∈ PreHil → ∀ 𝑦 ∈ 𝑉 ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) → 𝑦 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑦 , 𝑥 ) ) = ( 𝑥 , 𝑦 ) ) ) |
10 |
|
simp1 |
⊢ ( ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) → 𝑦 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑦 , 𝑥 ) ) = ( 𝑥 , 𝑦 ) ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
11 |
10
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝑉 ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) → 𝑦 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑦 , 𝑥 ) ) = ( 𝑥 , 𝑦 ) ) → ∀ 𝑦 ∈ 𝑉 ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
12 |
9 11
|
syl |
⊢ ( 𝑊 ∈ PreHil → ∀ 𝑦 ∈ 𝑉 ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 , 𝑦 ) = ( 𝑥 , 𝐴 ) ) |
14 |
13
|
mpteq2dv |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) = ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐴 ) ) ) |
15 |
14 4
|
eqtr4di |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) = 𝐺 ) |
16 |
15
|
eleq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ↔ 𝐺 ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) ) |
17 |
16
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝑉 ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ 𝐴 ∈ 𝑉 ) → 𝐺 ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
18 |
12 17
|
sylan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → 𝐺 ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |