| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlpropd.1 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐾 ) ) | 
						
							| 2 |  | phlpropd.2 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐿 ) ) | 
						
							| 3 |  | phlpropd.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 4 |  | phlpropd.4 | ⊢ ( 𝜑  →  𝐹  =  ( Scalar ‘ 𝐾 ) ) | 
						
							| 5 |  | phlpropd.5 | ⊢ ( 𝜑  →  𝐹  =  ( Scalar ‘ 𝐿 ) ) | 
						
							| 6 |  | phlpropd.6 | ⊢ 𝑃  =  ( Base ‘ 𝐹 ) | 
						
							| 7 |  | phlpropd.7 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑃  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 (  ·𝑠  ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 8 |  | phlpropd.8 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( ·𝑖 ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( ·𝑖 ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 9 | 1 2 3 4 5 6 7 | lvecpropd | ⊢ ( 𝜑  →  ( 𝐾  ∈  LVec  ↔  𝐿  ∈  LVec ) ) | 
						
							| 10 | 4 5 | eqtr3d | ⊢ ( 𝜑  →  ( Scalar ‘ 𝐾 )  =  ( Scalar ‘ 𝐿 ) ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( 𝜑  →  ( ( Scalar ‘ 𝐾 )  ∈  *-Ring  ↔  ( Scalar ‘ 𝐿 )  ∈  *-Ring ) ) | 
						
							| 12 | 8 | oveqrspc2v | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∈  𝐵  ∧  𝑎  ∈  𝐵 ) )  →  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  =  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) | 
						
							| 13 | 12 | anass1rs | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  =  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) | 
						
							| 14 | 13 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( 𝑏  ∈  𝐵  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) )  =  ( 𝑏  ∈  𝐵  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) | 
						
							| 15 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  𝐵  =  ( Base ‘ 𝐾 ) ) | 
						
							| 16 | 15 | mpteq1d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( 𝑏  ∈  𝐵  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) )  =  ( 𝑏  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ) | 
						
							| 17 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  𝐵  =  ( Base ‘ 𝐿 ) ) | 
						
							| 18 | 17 | mpteq1d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( 𝑏  ∈  𝐵  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) )  =  ( 𝑏  ∈  ( Base ‘ 𝐿 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) | 
						
							| 19 | 14 16 18 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( 𝑏  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) )  =  ( 𝑏  ∈  ( Base ‘ 𝐿 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) | 
						
							| 20 |  | rlmbas | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ ( ringLMod ‘ 𝐹 ) ) | 
						
							| 21 | 6 20 | eqtri | ⊢ 𝑃  =  ( Base ‘ ( ringLMod ‘ 𝐹 ) ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  𝑃  =  ( Base ‘ ( ringLMod ‘ 𝐹 ) ) ) | 
						
							| 23 |  | fvex | ⊢ ( Scalar ‘ 𝐾 )  ∈  V | 
						
							| 24 | 4 23 | eqeltrdi | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 25 |  | rlmsca | ⊢ ( 𝐹  ∈  V  →  𝐹  =  ( Scalar ‘ ( ringLMod ‘ 𝐹 ) ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝜑  →  𝐹  =  ( Scalar ‘ ( ringLMod ‘ 𝐹 ) ) ) | 
						
							| 27 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑃  ∧  𝑦  ∈  𝑃 ) )  →  ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐹 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐹 ) ) 𝑦 ) ) | 
						
							| 28 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑃  ∧  𝑦  ∈  𝑃 ) )  →  ( 𝑥 (  ·𝑠  ‘ ( ringLMod ‘ 𝐹 ) ) 𝑦 )  =  ( 𝑥 (  ·𝑠  ‘ ( ringLMod ‘ 𝐹 ) ) 𝑦 ) ) | 
						
							| 29 | 1 22 2 22 4 26 5 26 6 6 3 27 7 28 | lmhmpropd | ⊢ ( 𝜑  →  ( 𝐾  LMHom  ( ringLMod ‘ 𝐹 ) )  =  ( 𝐿  LMHom  ( ringLMod ‘ 𝐹 ) ) ) | 
						
							| 30 | 4 | fveq2d | ⊢ ( 𝜑  →  ( ringLMod ‘ 𝐹 )  =  ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( 𝜑  →  ( 𝐾  LMHom  ( ringLMod ‘ 𝐹 ) )  =  ( 𝐾  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ) | 
						
							| 32 | 5 | fveq2d | ⊢ ( 𝜑  →  ( ringLMod ‘ 𝐹 )  =  ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( 𝜑  →  ( 𝐿  LMHom  ( ringLMod ‘ 𝐹 ) )  =  ( 𝐿  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ) | 
						
							| 34 | 29 31 33 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝐾  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) )  =  ( 𝐿  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( 𝐾  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) )  =  ( 𝐿  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ) | 
						
							| 36 | 19 35 | eleq12d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑏  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) )  ∈  ( 𝐾  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) )  ↔  ( 𝑏  ∈  ( Base ‘ 𝐿 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) )  ∈  ( 𝐿  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ) ) | 
						
							| 37 | 8 | oveqrspc2v | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑎  ∈  𝐵 ) )  →  ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  =  ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) | 
						
							| 38 | 37 | anabsan2 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  =  ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) | 
						
							| 39 | 10 | fveq2d | ⊢ ( 𝜑  →  ( 0g ‘ ( Scalar ‘ 𝐾 ) )  =  ( 0g ‘ ( Scalar ‘ 𝐿 ) ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( 0g ‘ ( Scalar ‘ 𝐾 ) )  =  ( 0g ‘ ( Scalar ‘ 𝐿 ) ) ) | 
						
							| 41 | 38 40 | eqeq12d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐾 ) )  ↔  ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐿 ) ) ) ) | 
						
							| 42 | 1 2 3 | grpidpropd | ⊢ ( 𝜑  →  ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐿 ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐿 ) ) | 
						
							| 44 | 43 | eqeq2d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( 𝑎  =  ( 0g ‘ 𝐾 )  ↔  𝑎  =  ( 0g ‘ 𝐿 ) ) ) | 
						
							| 45 | 41 44 | imbi12d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐾 ) )  →  𝑎  =  ( 0g ‘ 𝐾 ) )  ↔  ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐿 ) )  →  𝑎  =  ( 0g ‘ 𝐿 ) ) ) ) | 
						
							| 46 | 10 | fveq2d | ⊢ ( 𝜑  →  ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) )  =  ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) )  =  ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ) | 
						
							| 48 | 8 | oveqrspc2v | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 )  =  ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) | 
						
							| 49 | 47 48 | fveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) )  =  ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) ) | 
						
							| 50 | 49 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) )  =  ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) ) | 
						
							| 51 | 50 13 | eqeq12d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  ↔  ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) | 
						
							| 52 | 51 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( ∀ 𝑏  ∈  𝐵 ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  ↔  ∀ 𝑏  ∈  𝐵 ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) | 
						
							| 53 | 15 | raleqdv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( ∀ 𝑏  ∈  𝐵 ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  ↔  ∀ 𝑏  ∈  ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ) | 
						
							| 54 | 17 | raleqdv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( ∀ 𝑏  ∈  𝐵 ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 )  ↔  ∀ 𝑏  ∈  ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) | 
						
							| 55 | 52 53 54 | 3bitr3d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( ∀ 𝑏  ∈  ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  ↔  ∀ 𝑏  ∈  ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) | 
						
							| 56 | 36 45 55 | 3anbi123d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( ( ( 𝑏  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) )  ∈  ( 𝐾  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) )  ∧  ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐾 ) )  →  𝑎  =  ( 0g ‘ 𝐾 ) )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) )  ↔  ( ( 𝑏  ∈  ( Base ‘ 𝐿 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) )  ∈  ( 𝐿  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) )  ∧  ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐿 ) )  →  𝑎  =  ( 0g ‘ 𝐿 ) )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) | 
						
							| 57 | 56 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑎  ∈  𝐵 ( ( 𝑏  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) )  ∈  ( 𝐾  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) )  ∧  ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐾 ) )  →  𝑎  =  ( 0g ‘ 𝐾 ) )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) )  ↔  ∀ 𝑎  ∈  𝐵 ( ( 𝑏  ∈  ( Base ‘ 𝐿 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) )  ∈  ( 𝐿  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) )  ∧  ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐿 ) )  →  𝑎  =  ( 0g ‘ 𝐿 ) )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) | 
						
							| 58 | 1 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑎  ∈  𝐵 ( ( 𝑏  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) )  ∈  ( 𝐾  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) )  ∧  ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐾 ) )  →  𝑎  =  ( 0g ‘ 𝐾 ) )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) )  ↔  ∀ 𝑎  ∈  ( Base ‘ 𝐾 ) ( ( 𝑏  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) )  ∈  ( 𝐾  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) )  ∧  ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐾 ) )  →  𝑎  =  ( 0g ‘ 𝐾 ) )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ) ) | 
						
							| 59 | 2 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑎  ∈  𝐵 ( ( 𝑏  ∈  ( Base ‘ 𝐿 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) )  ∈  ( 𝐿  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) )  ∧  ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐿 ) )  →  𝑎  =  ( 0g ‘ 𝐿 ) )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) )  ↔  ∀ 𝑎  ∈  ( Base ‘ 𝐿 ) ( ( 𝑏  ∈  ( Base ‘ 𝐿 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) )  ∈  ( 𝐿  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) )  ∧  ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐿 ) )  →  𝑎  =  ( 0g ‘ 𝐿 ) )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) | 
						
							| 60 | 57 58 59 | 3bitr3d | ⊢ ( 𝜑  →  ( ∀ 𝑎  ∈  ( Base ‘ 𝐾 ) ( ( 𝑏  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) )  ∈  ( 𝐾  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) )  ∧  ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐾 ) )  →  𝑎  =  ( 0g ‘ 𝐾 ) )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) )  ↔  ∀ 𝑎  ∈  ( Base ‘ 𝐿 ) ( ( 𝑏  ∈  ( Base ‘ 𝐿 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) )  ∈  ( 𝐿  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) )  ∧  ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐿 ) )  →  𝑎  =  ( 0g ‘ 𝐿 ) )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) | 
						
							| 61 | 9 11 60 | 3anbi123d | ⊢ ( 𝜑  →  ( ( 𝐾  ∈  LVec  ∧  ( Scalar ‘ 𝐾 )  ∈  *-Ring  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐾 ) ( ( 𝑏  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) )  ∈  ( 𝐾  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) )  ∧  ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐾 ) )  →  𝑎  =  ( 0g ‘ 𝐾 ) )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) )  ↔  ( 𝐿  ∈  LVec  ∧  ( Scalar ‘ 𝐿 )  ∈  *-Ring  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐿 ) ( ( 𝑏  ∈  ( Base ‘ 𝐿 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) )  ∈  ( 𝐿  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) )  ∧  ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐿 ) )  →  𝑎  =  ( 0g ‘ 𝐿 ) )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) ) | 
						
							| 62 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 63 |  | eqid | ⊢ ( Scalar ‘ 𝐾 )  =  ( Scalar ‘ 𝐾 ) | 
						
							| 64 |  | eqid | ⊢ ( ·𝑖 ‘ 𝐾 )  =  ( ·𝑖 ‘ 𝐾 ) | 
						
							| 65 |  | eqid | ⊢ ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐾 ) | 
						
							| 66 |  | eqid | ⊢ ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) )  =  ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) | 
						
							| 67 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝐾 ) )  =  ( 0g ‘ ( Scalar ‘ 𝐾 ) ) | 
						
							| 68 | 62 63 64 65 66 67 | isphl | ⊢ ( 𝐾  ∈  PreHil  ↔  ( 𝐾  ∈  LVec  ∧  ( Scalar ‘ 𝐾 )  ∈  *-Ring  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐾 ) ( ( 𝑏  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) )  ∈  ( 𝐾  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) )  ∧  ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐾 ) )  →  𝑎  =  ( 0g ‘ 𝐾 ) )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ) ) | 
						
							| 69 |  | eqid | ⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ 𝐿 ) | 
						
							| 70 |  | eqid | ⊢ ( Scalar ‘ 𝐿 )  =  ( Scalar ‘ 𝐿 ) | 
						
							| 71 |  | eqid | ⊢ ( ·𝑖 ‘ 𝐿 )  =  ( ·𝑖 ‘ 𝐿 ) | 
						
							| 72 |  | eqid | ⊢ ( 0g ‘ 𝐿 )  =  ( 0g ‘ 𝐿 ) | 
						
							| 73 |  | eqid | ⊢ ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) )  =  ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) | 
						
							| 74 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝐿 ) )  =  ( 0g ‘ ( Scalar ‘ 𝐿 ) ) | 
						
							| 75 | 69 70 71 72 73 74 | isphl | ⊢ ( 𝐿  ∈  PreHil  ↔  ( 𝐿  ∈  LVec  ∧  ( Scalar ‘ 𝐿 )  ∈  *-Ring  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝐿 ) ( ( 𝑏  ∈  ( Base ‘ 𝐿 )  ↦  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) )  ∈  ( 𝐿  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) )  ∧  ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 )  =  ( 0g ‘ ( Scalar ‘ 𝐿 ) )  →  𝑎  =  ( 0g ‘ 𝐿 ) )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) )  =  ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) | 
						
							| 76 | 61 68 75 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝐾  ∈  PreHil  ↔  𝐿  ∈  PreHil ) ) |