Metamath Proof Explorer


Theorem phlsrng

Description: The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypothesis phlsrng.f 𝐹 = ( Scalar ‘ 𝑊 )
Assertion phlsrng ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring )

Proof

Step Hyp Ref Expression
1 phlsrng.f 𝐹 = ( Scalar ‘ 𝑊 )
2 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
3 eqid ( ·𝑖𝑊 ) = ( ·𝑖𝑊 )
4 eqid ( 0g𝑊 ) = ( 0g𝑊 )
5 eqid ( *𝑟𝐹 ) = ( *𝑟𝐹 )
6 eqid ( 0g𝐹 ) = ( 0g𝐹 )
7 2 1 3 4 5 6 isphl ( 𝑊 ∈ PreHil ↔ ( 𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g𝐹 ) → 𝑥 = ( 0g𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟𝐹 ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) ) ) )
8 7 simp2bi ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring )