Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
7 |
2 1 3 4 5 6
|
isphl |
⊢ ( 𝑊 ∈ PreHil ↔ ( 𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ 𝐹 ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
8 |
7
|
simp2bi |
⊢ ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring ) |