Step |
Hyp |
Ref |
Expression |
1 |
|
phlssphl.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
2 |
|
phlssphl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
4 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( +g ‘ 𝑋 ) = ( +g ‘ 𝑋 ) ) |
5 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ·𝑠 ‘ 𝑋 ) = ( ·𝑠 ‘ 𝑋 ) ) |
6 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑋 ) ) |
7 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑋 ) = ( 0g ‘ 𝑋 ) |
10 |
1 8 9 2
|
lss0v |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
11 |
7 10
|
sylan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
12 |
11
|
eqcomd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑋 ) ) |
13 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) ) |
14 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
15 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( +g ‘ ( Scalar ‘ 𝑋 ) ) = ( +g ‘ ( Scalar ‘ 𝑋 ) ) ) |
16 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( .r ‘ ( Scalar ‘ 𝑋 ) ) = ( .r ‘ ( Scalar ‘ 𝑋 ) ) ) |
17 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ) |
18 |
|
eqidd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ ( Scalar ‘ 𝑋 ) ) = ( 0g ‘ ( Scalar ‘ 𝑋 ) ) ) |
19 |
|
phllvec |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LVec ) |
20 |
1 2
|
lsslvec |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LVec ) |
21 |
19 20
|
sylan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LVec ) |
22 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
23 |
1 22
|
resssca |
⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
24 |
23
|
eqcomd |
⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑊 ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑊 ) ) |
26 |
22
|
phlsrng |
⊢ ( 𝑊 ∈ PreHil → ( Scalar ‘ 𝑊 ) ∈ *-Ring ) |
27 |
26
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ *-Ring ) |
28 |
25 27
|
eqeltrd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) ∈ *-Ring ) |
29 |
|
simpl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ PreHil ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
31 |
1 30
|
ressbasss |
⊢ ( Base ‘ 𝑋 ) ⊆ ( Base ‘ 𝑊 ) |
32 |
31
|
sseli |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑋 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
33 |
31
|
sseli |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑋 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
34 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
35 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
36 |
22 34 30 35
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
37 |
29 32 33 36
|
syl3an |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
38 |
24
|
fveq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
39 |
38
|
eleq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
40 |
39
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
41 |
40
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
42 |
37 41
|
mpbird |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
43 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑋 ) |
44 |
1 34 43
|
ssipeq |
⊢ ( 𝑈 ∈ 𝑆 → ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑊 ) ) |
45 |
44
|
oveqd |
⊢ ( 𝑈 ∈ 𝑆 → ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
46 |
45
|
eleq1d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
47 |
46
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
48 |
47
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
49 |
42 48
|
mpbird |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
50 |
29
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑊 ∈ PreHil ) |
51 |
7
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ LMod ) |
52 |
51
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑊 ∈ LMod ) |
53 |
25
|
fveq2d |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
54 |
53
|
eleq2d |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
55 |
54
|
biimpa |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) → 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
56 |
55
|
3adant3 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
57 |
32
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
58 |
57
|
3ad2ant3 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
59 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
60 |
30 22 59 35
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( Base ‘ 𝑊 ) ) |
61 |
52 56 58 60
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( Base ‘ 𝑊 ) ) |
62 |
33
|
3ad2ant2 |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
63 |
62
|
3ad2ant3 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
64 |
31
|
sseli |
⊢ ( 𝑧 ∈ ( Base ‘ 𝑋 ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
65 |
64
|
3ad2ant3 |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
66 |
65
|
3ad2ant3 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
67 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
68 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) |
69 |
22 34 30 67 68
|
ipdir |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
70 |
50 61 63 66 69
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
71 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) |
72 |
22 34 30 35 59 71
|
ipass |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
73 |
50 56 58 66 72
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
74 |
73
|
oveq1d |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
75 |
70 74
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
76 |
1 67
|
ressplusg |
⊢ ( 𝑈 ∈ 𝑆 → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑋 ) ) |
77 |
76
|
eqcomd |
⊢ ( 𝑈 ∈ 𝑆 → ( +g ‘ 𝑋 ) = ( +g ‘ 𝑊 ) ) |
78 |
1 59
|
ressvsca |
⊢ ( 𝑈 ∈ 𝑆 → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
79 |
78
|
eqcomd |
⊢ ( 𝑈 ∈ 𝑆 → ( ·𝑠 ‘ 𝑋 ) = ( ·𝑠 ‘ 𝑊 ) ) |
80 |
79
|
oveqd |
⊢ ( 𝑈 ∈ 𝑆 → ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) = ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) |
81 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝑆 → 𝑦 = 𝑦 ) |
82 |
77 80 81
|
oveq123d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) |
83 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝑆 → 𝑧 = 𝑧 ) |
84 |
44 82 83
|
oveq123d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
85 |
24
|
fveq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( +g ‘ ( Scalar ‘ 𝑋 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
86 |
24
|
fveq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( .r ‘ ( Scalar ‘ 𝑋 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
87 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝑆 → 𝑞 = 𝑞 ) |
88 |
44
|
oveqd |
⊢ ( 𝑈 ∈ 𝑆 → ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
89 |
86 87 88
|
oveq123d |
⊢ ( 𝑈 ∈ 𝑆 → ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
90 |
44
|
oveqd |
⊢ ( 𝑈 ∈ 𝑆 → ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
91 |
85 89 90
|
oveq123d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
92 |
84 91
|
eqeq12d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ↔ ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) |
93 |
92
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ↔ ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) |
94 |
93
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ↔ ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) |
95 |
75 94
|
mpbird |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ) |
96 |
44
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑊 ) ) |
97 |
96
|
oveqdr |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
98 |
24
|
fveq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( 0g ‘ ( Scalar ‘ 𝑋 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
99 |
98
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ ( Scalar ‘ 𝑋 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
100 |
99
|
adantr |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( 0g ‘ ( Scalar ‘ 𝑋 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
101 |
97 100
|
eqeq12d |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
102 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
103 |
22 34 30 102 8
|
ipeq0 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
104 |
29 32 103
|
syl2an |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
105 |
104
|
biimpd |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
106 |
101 105
|
sylbid |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑋 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
107 |
106
|
3impia |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑋 ) ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) |
108 |
24
|
fveq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) |
109 |
108
|
fveq1d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
110 |
109
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
111 |
110
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
112 |
|
eqid |
⊢ ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) |
113 |
22 34 30 112
|
ipcj |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
114 |
29 32 33 113
|
syl3an |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
115 |
111 114
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
116 |
45
|
fveq2d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
117 |
44
|
oveqd |
⊢ ( 𝑈 ∈ 𝑆 → ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
118 |
116 117
|
eqeq12d |
⊢ ( 𝑈 ∈ 𝑆 → ( ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
119 |
118
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
120 |
119
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
121 |
115 120
|
mpbird |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) ) |
122 |
3 4 5 6 12 13 14 15 16 17 18 21 28 49 95 107 121
|
isphld |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ PreHil ) |