| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlssphl.x | ⊢ 𝑋  =  ( 𝑊  ↾s  𝑈 ) | 
						
							| 2 |  | phlssphl.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | eqidd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( Base ‘ 𝑋 )  =  ( Base ‘ 𝑋 ) ) | 
						
							| 4 |  | eqidd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( +g ‘ 𝑋 )  =  ( +g ‘ 𝑋 ) ) | 
						
							| 5 |  | eqidd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  (  ·𝑠  ‘ 𝑋 )  =  (  ·𝑠  ‘ 𝑋 ) ) | 
						
							| 6 |  | eqidd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( ·𝑖 ‘ 𝑋 )  =  ( ·𝑖 ‘ 𝑋 ) ) | 
						
							| 7 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 8 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 9 |  | eqid | ⊢ ( 0g ‘ 𝑋 )  =  ( 0g ‘ 𝑋 ) | 
						
							| 10 | 1 8 9 2 | lss0v | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  →  ( 0g ‘ 𝑋 )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 11 | 7 10 | sylan | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( 0g ‘ 𝑋 )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑋 ) ) | 
						
							| 13 |  | eqidd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( Scalar ‘ 𝑋 )  =  ( Scalar ‘ 𝑋 ) ) | 
						
							| 14 |  | eqidd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( Base ‘ ( Scalar ‘ 𝑋 ) )  =  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) | 
						
							| 15 |  | eqidd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( +g ‘ ( Scalar ‘ 𝑋 ) )  =  ( +g ‘ ( Scalar ‘ 𝑋 ) ) ) | 
						
							| 16 |  | eqidd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( .r ‘ ( Scalar ‘ 𝑋 ) )  =  ( .r ‘ ( Scalar ‘ 𝑋 ) ) ) | 
						
							| 17 |  | eqidd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) )  =  ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ) | 
						
							| 18 |  | eqidd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( 0g ‘ ( Scalar ‘ 𝑋 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑋 ) ) ) | 
						
							| 19 |  | phllvec | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LVec ) | 
						
							| 20 | 1 2 | lsslvec | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  LVec ) | 
						
							| 21 | 19 20 | sylan | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  LVec ) | 
						
							| 22 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 23 | 1 22 | resssca | ⊢ ( 𝑈  ∈  𝑆  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑋 ) ) | 
						
							| 24 | 23 | eqcomd | ⊢ ( 𝑈  ∈  𝑆  →  ( Scalar ‘ 𝑋 )  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( Scalar ‘ 𝑋 )  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 26 | 22 | phlsrng | ⊢ ( 𝑊  ∈  PreHil  →  ( Scalar ‘ 𝑊 )  ∈  *-Ring ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( Scalar ‘ 𝑊 )  ∈  *-Ring ) | 
						
							| 28 | 25 27 | eqeltrd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( Scalar ‘ 𝑋 )  ∈  *-Ring ) | 
						
							| 29 |  | simpl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  𝑊  ∈  PreHil ) | 
						
							| 30 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 31 | 1 30 | ressbasss | ⊢ ( Base ‘ 𝑋 )  ⊆  ( Base ‘ 𝑊 ) | 
						
							| 32 | 31 | sseli | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑋 )  →  𝑥  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 33 | 31 | sseli | ⊢ ( 𝑦  ∈  ( Base ‘ 𝑋 )  →  𝑦  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 34 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 35 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 36 | 22 34 30 35 | ipcl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 37 | 29 32 33 36 | syl3an | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) )  →  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 38 | 24 | fveq2d | ⊢ ( 𝑈  ∈  𝑆  →  ( Base ‘ ( Scalar ‘ 𝑋 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 39 | 38 | eleq2d | ⊢ ( 𝑈  ∈  𝑆  →  ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ↔  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ↔  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 41 | 40 | 3ad2ant1 | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) )  →  ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ↔  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 42 | 37 41 | mpbird | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) )  →  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) | 
						
							| 43 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑋 )  =  ( ·𝑖 ‘ 𝑋 ) | 
						
							| 44 | 1 34 43 | ssipeq | ⊢ ( 𝑈  ∈  𝑆  →  ( ·𝑖 ‘ 𝑋 )  =  ( ·𝑖 ‘ 𝑊 ) ) | 
						
							| 45 | 44 | oveqd | ⊢ ( 𝑈  ∈  𝑆  →  ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 )  =  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 46 | 45 | eleq1d | ⊢ ( 𝑈  ∈  𝑆  →  ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ↔  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ↔  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) | 
						
							| 48 | 47 | 3ad2ant1 | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) )  →  ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ↔  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) | 
						
							| 49 | 42 48 | mpbird | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) )  →  ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) | 
						
							| 50 | 29 | 3ad2ant1 | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 )  ∧  𝑧  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑊  ∈  PreHil ) | 
						
							| 51 | 7 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  𝑊  ∈  LMod ) | 
						
							| 52 | 51 | 3ad2ant1 | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 )  ∧  𝑧  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑊  ∈  LMod ) | 
						
							| 53 | 25 | fveq2d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( Base ‘ ( Scalar ‘ 𝑋 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 54 | 53 | eleq2d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ↔  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 55 | 54 | biimpa | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) ) )  →  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 56 | 55 | 3adant3 | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 )  ∧  𝑧  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 57 | 32 | 3ad2ant1 | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 )  ∧  𝑧  ∈  ( Base ‘ 𝑋 ) )  →  𝑥  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 58 | 57 | 3ad2ant3 | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 )  ∧  𝑧  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑥  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 59 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 60 | 30 22 59 35 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 61 | 52 56 58 60 | syl3anc | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 )  ∧  𝑧  ∈  ( Base ‘ 𝑋 ) ) )  →  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 62 | 33 | 3ad2ant2 | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 )  ∧  𝑧  ∈  ( Base ‘ 𝑋 ) )  →  𝑦  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 63 | 62 | 3ad2ant3 | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 )  ∧  𝑧  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 64 | 31 | sseli | ⊢ ( 𝑧  ∈  ( Base ‘ 𝑋 )  →  𝑧  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 65 | 64 | 3ad2ant3 | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 )  ∧  𝑧  ∈  ( Base ‘ 𝑋 ) )  →  𝑧  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 66 | 65 | 3ad2ant3 | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 )  ∧  𝑧  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑧  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 67 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 68 |  | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) )  =  ( +g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 69 | 22 34 30 67 68 | ipdir | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 70 | 50 61 63 66 69 | syl13anc | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 )  ∧  𝑧  ∈  ( Base ‘ 𝑋 ) ) )  →  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 71 |  | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) )  =  ( .r ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 72 | 22 34 30 35 59 71 | ipass | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 73 | 50 56 58 66 72 | syl13anc | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 )  ∧  𝑧  ∈  ( Base ‘ 𝑋 ) ) )  →  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 74 | 73 | oveq1d | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 )  ∧  𝑧  ∈  ( Base ‘ 𝑋 ) ) )  →  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 75 | 70 74 | eqtrd | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 )  ∧  𝑧  ∈  ( Base ‘ 𝑋 ) ) )  →  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 76 | 1 67 | ressplusg | ⊢ ( 𝑈  ∈  𝑆  →  ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑋 ) ) | 
						
							| 77 | 76 | eqcomd | ⊢ ( 𝑈  ∈  𝑆  →  ( +g ‘ 𝑋 )  =  ( +g ‘ 𝑊 ) ) | 
						
							| 78 | 1 59 | ressvsca | ⊢ ( 𝑈  ∈  𝑆  →  (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑋 ) ) | 
						
							| 79 | 78 | eqcomd | ⊢ ( 𝑈  ∈  𝑆  →  (  ·𝑠  ‘ 𝑋 )  =  (  ·𝑠  ‘ 𝑊 ) ) | 
						
							| 80 | 79 | oveqd | ⊢ ( 𝑈  ∈  𝑆  →  ( 𝑞 (  ·𝑠  ‘ 𝑋 ) 𝑥 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 81 |  | eqidd | ⊢ ( 𝑈  ∈  𝑆  →  𝑦  =  𝑦 ) | 
						
							| 82 | 77 80 81 | oveq123d | ⊢ ( 𝑈  ∈  𝑆  →  ( ( 𝑞 (  ·𝑠  ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 83 |  | eqidd | ⊢ ( 𝑈  ∈  𝑆  →  𝑧  =  𝑧 ) | 
						
							| 84 | 44 82 83 | oveq123d | ⊢ ( 𝑈  ∈  𝑆  →  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 )  =  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 85 | 24 | fveq2d | ⊢ ( 𝑈  ∈  𝑆  →  ( +g ‘ ( Scalar ‘ 𝑋 ) )  =  ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 86 | 24 | fveq2d | ⊢ ( 𝑈  ∈  𝑆  →  ( .r ‘ ( Scalar ‘ 𝑋 ) )  =  ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 87 |  | eqidd | ⊢ ( 𝑈  ∈  𝑆  →  𝑞  =  𝑞 ) | 
						
							| 88 | 44 | oveqd | ⊢ ( 𝑈  ∈  𝑆  →  ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 )  =  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 89 | 86 87 88 | oveq123d | ⊢ ( 𝑈  ∈  𝑆  →  ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) )  =  ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 90 | 44 | oveqd | ⊢ ( 𝑈  ∈  𝑆  →  ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 91 | 85 89 90 | oveq123d | ⊢ ( 𝑈  ∈  𝑆  →  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 92 | 84 91 | eqeq12d | ⊢ ( 𝑈  ∈  𝑆  →  ( ( ( ( 𝑞 (  ·𝑠  ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) )  ↔  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) | 
						
							| 93 | 92 | adantl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( ( ( ( 𝑞 (  ·𝑠  ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) )  ↔  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) | 
						
							| 94 | 93 | 3ad2ant1 | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 )  ∧  𝑧  ∈  ( Base ‘ 𝑋 ) ) )  →  ( ( ( ( 𝑞 (  ·𝑠  ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) )  ↔  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) | 
						
							| 95 | 75 94 | mpbird | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 )  ∧  𝑧  ∈  ( Base ‘ 𝑋 ) ) )  →  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ) | 
						
							| 96 | 44 | adantl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( ·𝑖 ‘ 𝑋 )  =  ( ·𝑖 ‘ 𝑊 ) ) | 
						
							| 97 | 96 | oveqdr | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 ) )  →  ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑥 )  =  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 98 | 24 | fveq2d | ⊢ ( 𝑈  ∈  𝑆  →  ( 0g ‘ ( Scalar ‘ 𝑋 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 99 | 98 | adantl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( 0g ‘ ( Scalar ‘ 𝑋 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 100 | 99 | adantr | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 ) )  →  ( 0g ‘ ( Scalar ‘ 𝑋 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 101 | 97 100 | eqeq12d | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 ) )  →  ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑋 ) )  ↔  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 102 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 103 | 22 34 30 102 8 | ipeq0 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  𝑥  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 104 | 29 32 103 | syl2an | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 ) )  →  ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  𝑥  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 105 | 104 | biimpd | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 ) )  →  ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  →  𝑥  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 106 | 101 105 | sylbid | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 ) )  →  ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑋 ) )  →  𝑥  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 107 | 106 | 3impia | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 )  ∧  ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑋 ) ) )  →  𝑥  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 108 | 24 | fveq2d | ⊢ ( 𝑈  ∈  𝑆  →  ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) )  =  ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 109 | 108 | fveq1d | ⊢ ( 𝑈  ∈  𝑆  →  ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) | 
						
							| 110 | 109 | adantl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) | 
						
							| 111 | 110 | 3ad2ant1 | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) )  →  ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) | 
						
							| 112 |  | eqid | ⊢ ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) )  =  ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 113 | 22 34 30 112 | ipcj | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 114 | 29 32 33 113 | syl3an | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) )  →  ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 115 | 111 114 | eqtrd | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) )  →  ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 116 | 45 | fveq2d | ⊢ ( 𝑈  ∈  𝑆  →  ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) )  =  ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) | 
						
							| 117 | 44 | oveqd | ⊢ ( 𝑈  ∈  𝑆  →  ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 118 | 116 117 | eqeq12d | ⊢ ( 𝑈  ∈  𝑆  →  ( ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 )  ↔  ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) | 
						
							| 119 | 118 | adantl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  ( ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 )  ↔  ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) | 
						
							| 120 | 119 | 3ad2ant1 | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) )  →  ( ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 )  ↔  ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) | 
						
							| 121 | 115 120 | mpbird | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑋 )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) )  →  ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) ) | 
						
							| 122 | 3 4 5 6 12 13 14 15 16 17 18 21 28 49 95 107 121 | isphld | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  PreHil ) |