| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-ph | 
							⊢ CPreHilOLD  =  ( NrmCVec  ∩  { 〈 〈 𝑔 ,  𝑠 〉 ,  𝑛 〉  ∣  ∀ 𝑥  ∈  ran  𝑔 ∀ 𝑦  ∈  ran  𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 )  +  ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } )  | 
						
						
							| 2 | 
							
								
							 | 
							inss1 | 
							⊢ ( NrmCVec  ∩  { 〈 〈 𝑔 ,  𝑠 〉 ,  𝑛 〉  ∣  ∀ 𝑥  ∈  ran  𝑔 ∀ 𝑦  ∈  ran  𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 )  +  ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } )  ⊆  NrmCVec  | 
						
						
							| 3 | 
							
								1 2
							 | 
							eqsstri | 
							⊢ CPreHilOLD  ⊆  NrmCVec  | 
						
						
							| 4 | 
							
								3
							 | 
							sseli | 
							⊢ ( 𝑈  ∈  CPreHilOLD  →  𝑈  ∈  NrmCVec )  |