Step |
Hyp |
Ref |
Expression |
1 |
|
df-ph |
⊢ CPreHilOLD = ( NrmCVec ∩ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } ) |
2 |
|
inss1 |
⊢ ( NrmCVec ∩ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } ) ⊆ NrmCVec |
3 |
1 2
|
eqsstri |
⊢ CPreHilOLD ⊆ NrmCVec |
4 |
3
|
sseli |
⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) |