| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ph | ⊢ CPreHilOLD  =  ( NrmCVec  ∩  { 〈 〈 𝑔 ,  𝑠 〉 ,  𝑛 〉  ∣  ∀ 𝑥  ∈  ran  𝑔 ∀ 𝑦  ∈  ran  𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 )  +  ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } ) | 
						
							| 2 |  | inss1 | ⊢ ( NrmCVec  ∩  { 〈 〈 𝑔 ,  𝑠 〉 ,  𝑛 〉  ∣  ∀ 𝑥  ∈  ran  𝑔 ∀ 𝑦  ∈  ran  𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 )  +  ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } )  ⊆  NrmCVec | 
						
							| 3 | 1 2 | eqsstri | ⊢ CPreHilOLD  ⊆  NrmCVec | 
						
							| 4 | 3 | sseli | ⊢ ( 𝑈  ∈  CPreHilOLD  →  𝑈  ∈  NrmCVec ) |