Metamath Proof Explorer


Theorem phnvi

Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypothesis phnvi.1 𝑈 ∈ CPreHilOLD
Assertion phnvi 𝑈 ∈ NrmCVec

Proof

Step Hyp Ref Expression
1 phnvi.1 𝑈 ∈ CPreHilOLD
2 phnv ( 𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec )
3 1 2 ax-mp 𝑈 ∈ NrmCVec