Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | phnvi.1 | ⊢ 𝑈 ∈ CPreHilOLD | |
Assertion | phnvi | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phnvi.1 | ⊢ 𝑈 ∈ CPreHilOLD | |
2 | phnv | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) | |
3 | 1 2 | ax-mp | ⊢ 𝑈 ∈ NrmCVec |