Step |
Hyp |
Ref |
Expression |
1 |
|
ip2eqi.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
ip2eqi.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
3 |
|
ip2eqi.u |
⊢ 𝑈 ∈ CPreHilOLD |
4 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
5 |
|
ffvelrn |
⊢ ( ( 𝑆 : 𝑌 ⟶ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑆 ‘ 𝑦 ) ∈ 𝑋 ) |
6 |
|
ffvelrn |
⊢ ( ( 𝑇 : 𝑌 ⟶ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑇 ‘ 𝑦 ) ∈ 𝑋 ) |
7 |
1 2 3
|
ip2eqi |
⊢ ( ( ( 𝑆 ‘ 𝑦 ) ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑦 ) ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
8 |
5 6 7
|
syl2an |
⊢ ( ( ( 𝑆 : 𝑌 ⟶ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝑇 : 𝑌 ⟶ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
9 |
8
|
anandirs |
⊢ ( ( ( 𝑆 : 𝑌 ⟶ 𝑋 ∧ 𝑇 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
10 |
9
|
ralbidva |
⊢ ( ( 𝑆 : 𝑌 ⟶ 𝑋 ∧ 𝑇 : 𝑌 ⟶ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑆 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
11 |
|
ffn |
⊢ ( 𝑆 : 𝑌 ⟶ 𝑋 → 𝑆 Fn 𝑌 ) |
12 |
|
ffn |
⊢ ( 𝑇 : 𝑌 ⟶ 𝑋 → 𝑇 Fn 𝑌 ) |
13 |
|
eqfnfv |
⊢ ( ( 𝑆 Fn 𝑌 ∧ 𝑇 Fn 𝑌 ) → ( 𝑆 = 𝑇 ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑆 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
14 |
11 12 13
|
syl2an |
⊢ ( ( 𝑆 : 𝑌 ⟶ 𝑋 ∧ 𝑇 : 𝑌 ⟶ 𝑋 ) → ( 𝑆 = 𝑇 ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑆 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
15 |
10 14
|
bitr4d |
⊢ ( ( 𝑆 : 𝑌 ⟶ 𝑋 ∧ 𝑇 : 𝑌 ⟶ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ↔ 𝑆 = 𝑇 ) ) |
16 |
4 15
|
syl5bb |
⊢ ( ( 𝑆 : 𝑌 ⟶ 𝑋 ∧ 𝑇 : 𝑌 ⟶ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ↔ 𝑆 = 𝑇 ) ) |