Metamath Proof Explorer


Theorem phoeqi

Description: A condition implying that two operators are equal. (Contributed by NM, 25-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses ip2eqi.1 𝑋 = ( BaseSet ‘ 𝑈 )
ip2eqi.7 𝑃 = ( ·𝑖OLD𝑈 )
ip2eqi.u 𝑈 ∈ CPreHilOLD
Assertion phoeqi ( ( 𝑆 : 𝑌𝑋𝑇 : 𝑌𝑋 ) → ( ∀ 𝑥𝑋𝑦𝑌 ( 𝑥 𝑃 ( 𝑆𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇𝑦 ) ) ↔ 𝑆 = 𝑇 ) )

Proof

Step Hyp Ref Expression
1 ip2eqi.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 ip2eqi.7 𝑃 = ( ·𝑖OLD𝑈 )
3 ip2eqi.u 𝑈 ∈ CPreHilOLD
4 ralcom ( ∀ 𝑥𝑋𝑦𝑌 ( 𝑥 𝑃 ( 𝑆𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇𝑦 ) ) ↔ ∀ 𝑦𝑌𝑥𝑋 ( 𝑥 𝑃 ( 𝑆𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇𝑦 ) ) )
5 ffvelrn ( ( 𝑆 : 𝑌𝑋𝑦𝑌 ) → ( 𝑆𝑦 ) ∈ 𝑋 )
6 ffvelrn ( ( 𝑇 : 𝑌𝑋𝑦𝑌 ) → ( 𝑇𝑦 ) ∈ 𝑋 )
7 1 2 3 ip2eqi ( ( ( 𝑆𝑦 ) ∈ 𝑋 ∧ ( 𝑇𝑦 ) ∈ 𝑋 ) → ( ∀ 𝑥𝑋 ( 𝑥 𝑃 ( 𝑆𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇𝑦 ) ) ↔ ( 𝑆𝑦 ) = ( 𝑇𝑦 ) ) )
8 5 6 7 syl2an ( ( ( 𝑆 : 𝑌𝑋𝑦𝑌 ) ∧ ( 𝑇 : 𝑌𝑋𝑦𝑌 ) ) → ( ∀ 𝑥𝑋 ( 𝑥 𝑃 ( 𝑆𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇𝑦 ) ) ↔ ( 𝑆𝑦 ) = ( 𝑇𝑦 ) ) )
9 8 anandirs ( ( ( 𝑆 : 𝑌𝑋𝑇 : 𝑌𝑋 ) ∧ 𝑦𝑌 ) → ( ∀ 𝑥𝑋 ( 𝑥 𝑃 ( 𝑆𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇𝑦 ) ) ↔ ( 𝑆𝑦 ) = ( 𝑇𝑦 ) ) )
10 9 ralbidva ( ( 𝑆 : 𝑌𝑋𝑇 : 𝑌𝑋 ) → ( ∀ 𝑦𝑌𝑥𝑋 ( 𝑥 𝑃 ( 𝑆𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇𝑦 ) ) ↔ ∀ 𝑦𝑌 ( 𝑆𝑦 ) = ( 𝑇𝑦 ) ) )
11 ffn ( 𝑆 : 𝑌𝑋𝑆 Fn 𝑌 )
12 ffn ( 𝑇 : 𝑌𝑋𝑇 Fn 𝑌 )
13 eqfnfv ( ( 𝑆 Fn 𝑌𝑇 Fn 𝑌 ) → ( 𝑆 = 𝑇 ↔ ∀ 𝑦𝑌 ( 𝑆𝑦 ) = ( 𝑇𝑦 ) ) )
14 11 12 13 syl2an ( ( 𝑆 : 𝑌𝑋𝑇 : 𝑌𝑋 ) → ( 𝑆 = 𝑇 ↔ ∀ 𝑦𝑌 ( 𝑆𝑦 ) = ( 𝑇𝑦 ) ) )
15 10 14 bitr4d ( ( 𝑆 : 𝑌𝑋𝑇 : 𝑌𝑋 ) → ( ∀ 𝑦𝑌𝑥𝑋 ( 𝑥 𝑃 ( 𝑆𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇𝑦 ) ) ↔ 𝑆 = 𝑇 ) )
16 4 15 syl5bb ( ( 𝑆 : 𝑌𝑋𝑇 : 𝑌𝑋 ) → ( ∀ 𝑥𝑋𝑦𝑌 ( 𝑥 𝑃 ( 𝑆𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇𝑦 ) ) ↔ 𝑆 = 𝑇 ) )