Step |
Hyp |
Ref |
Expression |
1 |
|
nnfi |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) |
2 |
|
pssss |
⊢ ( 𝐵 ⊊ 𝐴 → 𝐵 ⊆ 𝐴 ) |
3 |
|
ssdomfi |
⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴 ) ) |
4 |
3
|
imp |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ≼ 𝐴 ) |
5 |
1 2 4
|
syl2an |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≼ 𝐴 ) |
6 |
|
php |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ¬ 𝐴 ≈ 𝐵 ) |
7 |
|
ensymfib |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴 ) ) |
8 |
7
|
biimprd |
⊢ ( 𝐴 ∈ Fin → ( 𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵 ) ) |
9 |
1 8
|
syl |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ( 𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵 ) ) |
11 |
6 10
|
mtod |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ¬ 𝐵 ≈ 𝐴 ) |
12 |
|
brsdom |
⊢ ( 𝐵 ≺ 𝐴 ↔ ( 𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴 ) ) |
13 |
5 11 12
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) |