| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnfi | ⊢ ( 𝐴  ∈  ω  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | pssss | ⊢ ( 𝐵  ⊊  𝐴  →  𝐵  ⊆  𝐴 ) | 
						
							| 3 |  | ssdomfi | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐵  ⊆  𝐴  →  𝐵  ≼  𝐴 ) ) | 
						
							| 4 | 3 | imp | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  𝐴 )  →  𝐵  ≼  𝐴 ) | 
						
							| 5 | 1 2 4 | syl2an | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ⊊  𝐴 )  →  𝐵  ≼  𝐴 ) | 
						
							| 6 |  | php | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ⊊  𝐴 )  →  ¬  𝐴  ≈  𝐵 ) | 
						
							| 7 |  | ensymfib | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  ≈  𝐵  ↔  𝐵  ≈  𝐴 ) ) | 
						
							| 8 | 7 | biimprd | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐵  ≈  𝐴  →  𝐴  ≈  𝐵 ) ) | 
						
							| 9 | 1 8 | syl | ⊢ ( 𝐴  ∈  ω  →  ( 𝐵  ≈  𝐴  →  𝐴  ≈  𝐵 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ⊊  𝐴 )  →  ( 𝐵  ≈  𝐴  →  𝐴  ≈  𝐵 ) ) | 
						
							| 11 | 6 10 | mtod | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ⊊  𝐴 )  →  ¬  𝐵  ≈  𝐴 ) | 
						
							| 12 |  | brsdom | ⊢ ( 𝐵  ≺  𝐴  ↔  ( 𝐵  ≼  𝐴  ∧  ¬  𝐵  ≈  𝐴 ) ) | 
						
							| 13 | 5 11 12 | sylanbrc | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ⊊  𝐴 )  →  𝐵  ≺  𝐴 ) |