Metamath Proof Explorer


Theorem php2

Description: Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998)

Ref Expression
Assertion php2 ( ( 𝐴 ∈ ω ∧ 𝐵𝐴 ) → 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑥 = 𝐴 → ( 𝑥 ∈ ω ↔ 𝐴 ∈ ω ) )
2 psseq2 ( 𝑥 = 𝐴 → ( 𝐵𝑥𝐵𝐴 ) )
3 1 2 anbi12d ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ ω ∧ 𝐵𝑥 ) ↔ ( 𝐴 ∈ ω ∧ 𝐵𝐴 ) ) )
4 breq2 ( 𝑥 = 𝐴 → ( 𝐵𝑥𝐵𝐴 ) )
5 3 4 imbi12d ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ ω ∧ 𝐵𝑥 ) → 𝐵𝑥 ) ↔ ( ( 𝐴 ∈ ω ∧ 𝐵𝐴 ) → 𝐵𝐴 ) ) )
6 vex 𝑥 ∈ V
7 pssss ( 𝐵𝑥𝐵𝑥 )
8 ssdomg ( 𝑥 ∈ V → ( 𝐵𝑥𝐵𝑥 ) )
9 6 7 8 mpsyl ( 𝐵𝑥𝐵𝑥 )
10 9 adantl ( ( 𝑥 ∈ ω ∧ 𝐵𝑥 ) → 𝐵𝑥 )
11 php ( ( 𝑥 ∈ ω ∧ 𝐵𝑥 ) → ¬ 𝑥𝐵 )
12 ensym ( 𝐵𝑥𝑥𝐵 )
13 11 12 nsyl ( ( 𝑥 ∈ ω ∧ 𝐵𝑥 ) → ¬ 𝐵𝑥 )
14 brsdom ( 𝐵𝑥 ↔ ( 𝐵𝑥 ∧ ¬ 𝐵𝑥 ) )
15 10 13 14 sylanbrc ( ( 𝑥 ∈ ω ∧ 𝐵𝑥 ) → 𝐵𝑥 )
16 5 15 vtoclg ( 𝐴 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐵𝐴 ) → 𝐵𝐴 ) )
17 16 anabsi5 ( ( 𝐴 ∈ ω ∧ 𝐵𝐴 ) → 𝐵𝐴 )