Metamath Proof Explorer


Theorem php2

Description: Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998) Avoid ax-pow . (Revised by BTernaryTau, 20-Nov-2024)

Ref Expression
Assertion php2 ( ( 𝐴 ∈ ω ∧ 𝐵𝐴 ) → 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 nnfi ( 𝐴 ∈ ω → 𝐴 ∈ Fin )
2 pssss ( 𝐵𝐴𝐵𝐴 )
3 ssdomfi ( 𝐴 ∈ Fin → ( 𝐵𝐴𝐵𝐴 ) )
4 3 imp ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) → 𝐵𝐴 )
5 1 2 4 syl2an ( ( 𝐴 ∈ ω ∧ 𝐵𝐴 ) → 𝐵𝐴 )
6 php ( ( 𝐴 ∈ ω ∧ 𝐵𝐴 ) → ¬ 𝐴𝐵 )
7 ensymfib ( 𝐴 ∈ Fin → ( 𝐴𝐵𝐵𝐴 ) )
8 7 biimprd ( 𝐴 ∈ Fin → ( 𝐵𝐴𝐴𝐵 ) )
9 1 8 syl ( 𝐴 ∈ ω → ( 𝐵𝐴𝐴𝐵 ) )
10 9 adantr ( ( 𝐴 ∈ ω ∧ 𝐵𝐴 ) → ( 𝐵𝐴𝐴𝐵 ) )
11 6 10 mtod ( ( 𝐴 ∈ ω ∧ 𝐵𝐴 ) → ¬ 𝐵𝐴 )
12 brsdom ( 𝐵𝐴 ↔ ( 𝐵𝐴 ∧ ¬ 𝐵𝐴 ) )
13 5 11 12 sylanbrc ( ( 𝐴 ∈ ω ∧ 𝐵𝐴 ) → 𝐵𝐴 )