Step |
Hyp |
Ref |
Expression |
1 |
|
isfi |
⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) |
2 |
|
relen |
⊢ Rel ≈ |
3 |
2
|
brrelex1i |
⊢ ( 𝐴 ≈ 𝑥 → 𝐴 ∈ V ) |
4 |
|
pssss |
⊢ ( 𝐵 ⊊ 𝐴 → 𝐵 ⊆ 𝐴 ) |
5 |
|
ssdomg |
⊢ ( 𝐴 ∈ V → ( 𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴 ) ) |
6 |
5
|
imp |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ≼ 𝐴 ) |
7 |
3 4 6
|
syl2an |
⊢ ( ( 𝐴 ≈ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≼ 𝐴 ) |
8 |
7
|
adantll |
⊢ ( ( ( 𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥 ) ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≼ 𝐴 ) |
9 |
|
bren |
⊢ ( 𝐴 ≈ 𝑥 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝑥 ) |
10 |
|
imass2 |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑓 “ 𝐵 ) ⊆ ( 𝑓 “ 𝐴 ) ) |
11 |
4 10
|
syl |
⊢ ( 𝐵 ⊊ 𝐴 → ( 𝑓 “ 𝐵 ) ⊆ ( 𝑓 “ 𝐴 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ( 𝑓 “ 𝐵 ) ⊆ ( 𝑓 “ 𝐴 ) ) |
13 |
|
pssnel |
⊢ ( 𝐵 ⊊ 𝐴 → ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
14 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
15 |
|
f1ofn |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → 𝑓 Fn 𝐴 ) |
16 |
|
difss |
⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 |
17 |
|
fnfvima |
⊢ ( ( 𝑓 Fn 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ∧ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) ) |
18 |
17
|
3expia |
⊢ ( ( 𝑓 Fn 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) → ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) ) ) |
19 |
15 16 18
|
sylancl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) ) ) |
20 |
|
dff1o3 |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ↔ ( 𝑓 : 𝐴 –onto→ 𝑥 ∧ Fun ◡ 𝑓 ) ) |
21 |
|
imadif |
⊢ ( Fun ◡ 𝑓 → ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) ) |
22 |
20 21
|
simplbiim |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) ) |
23 |
22
|
eleq2d |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) ) ) |
24 |
19 23
|
sylibd |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) ) ) |
25 |
|
n0i |
⊢ ( ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) |
26 |
24 25
|
syl6 |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) ) |
27 |
14 26
|
syl5bir |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) ) |
28 |
27
|
exlimdv |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) ) |
29 |
28
|
imp |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) |
30 |
13 29
|
sylan2 |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) |
31 |
|
ssdif0 |
⊢ ( ( 𝑓 “ 𝐴 ) ⊆ ( 𝑓 “ 𝐵 ) ↔ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) |
32 |
30 31
|
sylnibr |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ¬ ( 𝑓 “ 𝐴 ) ⊆ ( 𝑓 “ 𝐵 ) ) |
33 |
|
dfpss3 |
⊢ ( ( 𝑓 “ 𝐵 ) ⊊ ( 𝑓 “ 𝐴 ) ↔ ( ( 𝑓 “ 𝐵 ) ⊆ ( 𝑓 “ 𝐴 ) ∧ ¬ ( 𝑓 “ 𝐴 ) ⊆ ( 𝑓 “ 𝐵 ) ) ) |
34 |
12 32 33
|
sylanbrc |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ( 𝑓 “ 𝐵 ) ⊊ ( 𝑓 “ 𝐴 ) ) |
35 |
|
imadmrn |
⊢ ( 𝑓 “ dom 𝑓 ) = ran 𝑓 |
36 |
|
f1odm |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → dom 𝑓 = 𝐴 ) |
37 |
36
|
imaeq2d |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑓 “ dom 𝑓 ) = ( 𝑓 “ 𝐴 ) ) |
38 |
|
f1ofo |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → 𝑓 : 𝐴 –onto→ 𝑥 ) |
39 |
|
forn |
⊢ ( 𝑓 : 𝐴 –onto→ 𝑥 → ran 𝑓 = 𝑥 ) |
40 |
38 39
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ran 𝑓 = 𝑥 ) |
41 |
35 37 40
|
3eqtr3a |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑓 “ 𝐴 ) = 𝑥 ) |
42 |
41
|
psseq2d |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( ( 𝑓 “ 𝐵 ) ⊊ ( 𝑓 “ 𝐴 ) ↔ ( 𝑓 “ 𝐵 ) ⊊ 𝑥 ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝑓 “ 𝐵 ) ⊊ ( 𝑓 “ 𝐴 ) ↔ ( 𝑓 “ 𝐵 ) ⊊ 𝑥 ) ) |
44 |
34 43
|
mpbid |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ( 𝑓 “ 𝐵 ) ⊊ 𝑥 ) |
45 |
|
php |
⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑓 “ 𝐵 ) ⊊ 𝑥 ) → ¬ 𝑥 ≈ ( 𝑓 “ 𝐵 ) ) |
46 |
44 45
|
sylan2 |
⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) ) → ¬ 𝑥 ≈ ( 𝑓 “ 𝐵 ) ) |
47 |
|
f1of1 |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → 𝑓 : 𝐴 –1-1→ 𝑥 ) |
48 |
|
f1ores |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑓 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ) |
49 |
47 4 48
|
syl2an |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ( 𝑓 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ) |
50 |
|
vex |
⊢ 𝑓 ∈ V |
51 |
50
|
resex |
⊢ ( 𝑓 ↾ 𝐵 ) ∈ V |
52 |
|
f1oeq1 |
⊢ ( 𝑦 = ( 𝑓 ↾ 𝐵 ) → ( 𝑦 : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ↔ ( 𝑓 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ) ) |
53 |
51 52
|
spcev |
⊢ ( ( 𝑓 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) → ∃ 𝑦 𝑦 : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ) |
54 |
|
bren |
⊢ ( 𝐵 ≈ ( 𝑓 “ 𝐵 ) ↔ ∃ 𝑦 𝑦 : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ) |
55 |
53 54
|
sylibr |
⊢ ( ( 𝑓 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) → 𝐵 ≈ ( 𝑓 “ 𝐵 ) ) |
56 |
49 55
|
syl |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≈ ( 𝑓 “ 𝐵 ) ) |
57 |
|
entr |
⊢ ( ( 𝑥 ≈ 𝐵 ∧ 𝐵 ≈ ( 𝑓 “ 𝐵 ) ) → 𝑥 ≈ ( 𝑓 “ 𝐵 ) ) |
58 |
57
|
expcom |
⊢ ( 𝐵 ≈ ( 𝑓 “ 𝐵 ) → ( 𝑥 ≈ 𝐵 → 𝑥 ≈ ( 𝑓 “ 𝐵 ) ) ) |
59 |
56 58
|
syl |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ( 𝑥 ≈ 𝐵 → 𝑥 ≈ ( 𝑓 “ 𝐵 ) ) ) |
60 |
59
|
adantl |
⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) ) → ( 𝑥 ≈ 𝐵 → 𝑥 ≈ ( 𝑓 “ 𝐵 ) ) ) |
61 |
46 60
|
mtod |
⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) ) → ¬ 𝑥 ≈ 𝐵 ) |
62 |
61
|
exp32 |
⊢ ( 𝑥 ∈ ω → ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝐵 ⊊ 𝐴 → ¬ 𝑥 ≈ 𝐵 ) ) ) |
63 |
62
|
exlimdv |
⊢ ( 𝑥 ∈ ω → ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝐵 ⊊ 𝐴 → ¬ 𝑥 ≈ 𝐵 ) ) ) |
64 |
9 63
|
syl5bi |
⊢ ( 𝑥 ∈ ω → ( 𝐴 ≈ 𝑥 → ( 𝐵 ⊊ 𝐴 → ¬ 𝑥 ≈ 𝐵 ) ) ) |
65 |
64
|
imp31 |
⊢ ( ( ( 𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥 ) ∧ 𝐵 ⊊ 𝐴 ) → ¬ 𝑥 ≈ 𝐵 ) |
66 |
|
entr |
⊢ ( ( 𝐵 ≈ 𝐴 ∧ 𝐴 ≈ 𝑥 ) → 𝐵 ≈ 𝑥 ) |
67 |
66
|
ex |
⊢ ( 𝐵 ≈ 𝐴 → ( 𝐴 ≈ 𝑥 → 𝐵 ≈ 𝑥 ) ) |
68 |
|
ensym |
⊢ ( 𝐵 ≈ 𝑥 → 𝑥 ≈ 𝐵 ) |
69 |
67 68
|
syl6com |
⊢ ( 𝐴 ≈ 𝑥 → ( 𝐵 ≈ 𝐴 → 𝑥 ≈ 𝐵 ) ) |
70 |
69
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥 ) ∧ 𝐵 ⊊ 𝐴 ) → ( 𝐵 ≈ 𝐴 → 𝑥 ≈ 𝐵 ) ) |
71 |
65 70
|
mtod |
⊢ ( ( ( 𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥 ) ∧ 𝐵 ⊊ 𝐴 ) → ¬ 𝐵 ≈ 𝐴 ) |
72 |
|
brsdom |
⊢ ( 𝐵 ≺ 𝐴 ↔ ( 𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴 ) ) |
73 |
8 71 72
|
sylanbrc |
⊢ ( ( ( 𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥 ) ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
74 |
73
|
exp31 |
⊢ ( 𝑥 ∈ ω → ( 𝐴 ≈ 𝑥 → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴 ) ) ) |
75 |
74
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴 ) ) |
76 |
1 75
|
sylbi |
⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴 ) ) |
77 |
76
|
imp |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) |