Metamath Proof Explorer


Theorem php4

Description: Corollary of the Pigeonhole Principle php : a natural number is strictly dominated by its successor. (Contributed by NM, 26-Jul-2004)

Ref Expression
Assertion php4 ( 𝐴 ∈ ω → 𝐴 ≺ suc 𝐴 )

Proof

Step Hyp Ref Expression
1 sucidg ( 𝐴 ∈ ω → 𝐴 ∈ suc 𝐴 )
2 nnord ( 𝐴 ∈ ω → Ord 𝐴 )
3 ordsuc ( Ord 𝐴 ↔ Ord suc 𝐴 )
4 3 biimpi ( Ord 𝐴 → Ord suc 𝐴 )
5 ordelpss ( ( Ord 𝐴 ∧ Ord suc 𝐴 ) → ( 𝐴 ∈ suc 𝐴𝐴 ⊊ suc 𝐴 ) )
6 2 4 5 syl2anc2 ( 𝐴 ∈ ω → ( 𝐴 ∈ suc 𝐴𝐴 ⊊ suc 𝐴 ) )
7 1 6 mpbid ( 𝐴 ∈ ω → 𝐴 ⊊ suc 𝐴 )
8 peano2b ( 𝐴 ∈ ω ↔ suc 𝐴 ∈ ω )
9 php2 ( ( suc 𝐴 ∈ ω ∧ 𝐴 ⊊ suc 𝐴 ) → 𝐴 ≺ suc 𝐴 )
10 8 9 sylanb ( ( 𝐴 ∈ ω ∧ 𝐴 ⊊ suc 𝐴 ) → 𝐴 ≺ suc 𝐴 )
11 7 10 mpdan ( 𝐴 ∈ ω → 𝐴 ≺ suc 𝐴 )