Description: Corollary of the Pigeonhole Principle php : a natural number is strictly dominated by its successor. (Contributed by NM, 26-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | php4 | ⊢ ( 𝐴 ∈ ω → 𝐴 ≺ suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucidg | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ suc 𝐴 ) | |
| 2 | nnord | ⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) | |
| 3 | ordsuc | ⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) | |
| 4 | 3 | biimpi | ⊢ ( Ord 𝐴 → Ord suc 𝐴 ) |
| 5 | ordelpss | ⊢ ( ( Ord 𝐴 ∧ Ord suc 𝐴 ) → ( 𝐴 ∈ suc 𝐴 ↔ 𝐴 ⊊ suc 𝐴 ) ) | |
| 6 | 2 4 5 | syl2anc2 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ∈ suc 𝐴 ↔ 𝐴 ⊊ suc 𝐴 ) ) |
| 7 | 1 6 | mpbid | ⊢ ( 𝐴 ∈ ω → 𝐴 ⊊ suc 𝐴 ) |
| 8 | peano2b | ⊢ ( 𝐴 ∈ ω ↔ suc 𝐴 ∈ ω ) | |
| 9 | php2 | ⊢ ( ( suc 𝐴 ∈ ω ∧ 𝐴 ⊊ suc 𝐴 ) → 𝐴 ≺ suc 𝐴 ) | |
| 10 | 8 9 | sylanb | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ⊊ suc 𝐴 ) → 𝐴 ≺ suc 𝐴 ) |
| 11 | 7 10 | mpdan | ⊢ ( 𝐴 ∈ ω → 𝐴 ≺ suc 𝐴 ) |