| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phpar.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | phpar.2 | ⊢ 𝐺  =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 3 |  | phpar.4 | ⊢ 𝑆  =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 4 |  | phpar.6 | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 5 | 2 | fvexi | ⊢ 𝐺  ∈  V | 
						
							| 6 | 3 | fvexi | ⊢ 𝑆  ∈  V | 
						
							| 7 | 4 | fvexi | ⊢ 𝑁  ∈  V | 
						
							| 8 | 5 6 7 | 3pm3.2i | ⊢ ( 𝐺  ∈  V  ∧  𝑆  ∈  V  ∧  𝑁  ∈  V ) | 
						
							| 9 | 2 3 4 | phop | ⊢ ( 𝑈  ∈  CPreHilOLD  →  𝑈  =  〈 〈 𝐺 ,  𝑆 〉 ,  𝑁 〉 ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( 𝑈  ∈  CPreHilOLD  →  ( 𝑈  ∈  CPreHilOLD  ↔  〈 〈 𝐺 ,  𝑆 〉 ,  𝑁 〉  ∈  CPreHilOLD ) ) | 
						
							| 11 | 10 | ibi | ⊢ ( 𝑈  ∈  CPreHilOLD  →  〈 〈 𝐺 ,  𝑆 〉 ,  𝑁 〉  ∈  CPreHilOLD ) | 
						
							| 12 | 1 2 | bafval | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 13 | 12 | isphg | ⊢ ( ( 𝐺  ∈  V  ∧  𝑆  ∈  V  ∧  𝑁  ∈  V )  →  ( 〈 〈 𝐺 ,  𝑆 〉 ,  𝑁 〉  ∈  CPreHilOLD  ↔  ( 〈 〈 𝐺 ,  𝑆 〉 ,  𝑁 〉  ∈  NrmCVec  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) | 
						
							| 14 | 13 | simplbda | ⊢ ( ( ( 𝐺  ∈  V  ∧  𝑆  ∈  V  ∧  𝑁  ∈  V )  ∧  〈 〈 𝐺 ,  𝑆 〉 ,  𝑁 〉  ∈  CPreHilOLD )  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) | 
						
							| 15 | 8 11 14 | sylancr | ⊢ ( 𝑈  ∈  CPreHilOLD  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) | 
						
							| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝑈  ∈  CPreHilOLD  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) | 
						
							| 17 |  | fvoveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) )  =  ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  =  ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) ) | 
						
							| 19 |  | fvoveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) )  =  ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 )  =  ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) | 
						
							| 21 | 18 20 | oveq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) )  =  ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑁 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝐴 ) ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  =  ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) )  =  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( 𝑥  =  𝐴  →  ( 2  ·  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) | 
						
							| 26 | 21 25 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) )  ↔  ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) | 
						
							| 27 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴 𝐺 𝑦 )  =  ( 𝐴 𝐺 𝐵 ) ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) )  =  ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 )  =  ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) ) | 
						
							| 30 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( - 1 𝑆 𝑦 )  =  ( - 1 𝑆 𝐵 ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) )  =  ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) )  =  ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) | 
						
							| 33 | 32 | oveq1d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 )  =  ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) | 
						
							| 34 | 29 33 | oveq12d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) )  =  ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑁 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝐵 ) ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 )  =  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) )  =  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( 𝑦  =  𝐵  →  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) | 
						
							| 39 | 34 38 | eqeq12d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) )  ↔  ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) | 
						
							| 40 | 26 39 | rspc2v | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) )  →  ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) | 
						
							| 41 | 40 | 3adant1 | ⊢ ( ( 𝑈  ∈  CPreHilOLD  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) )  →  ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) | 
						
							| 42 | 16 41 | mpd | ⊢ ( ( 𝑈  ∈  CPreHilOLD  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 )  +  ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |