Step |
Hyp |
Ref |
Expression |
1 |
|
isph.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
isph.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
isph.3 |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
4 |
|
isph.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
5 |
1 2 3 4
|
isph |
⊢ ( 𝑈 ∈ CPreHilOLD ↔ ( 𝑈 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
6 |
5
|
simprbi |
⊢ ( 𝑈 ∈ CPreHilOLD → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
8 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) ) |
10 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
11 |
10
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) |
12 |
9 11
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝐴 ) ) |
14 |
13
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) |
15 |
14
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
17 |
12 16
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
18 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐺 𝑦 ) = ( 𝐴 𝐺 𝐵 ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) ) |
21 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝑀 𝑦 ) = ( 𝐴 𝑀 𝐵 ) ) |
22 |
21
|
fveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ) |
23 |
22
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) |
24 |
20 23
|
oveq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ 𝐵 ) ) |
26 |
25
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) = ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
28 |
27
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
29 |
24 28
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
30 |
17 29
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
31 |
30
|
3adant1 |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
32 |
7 31
|
mpd |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |