Metamath Proof Explorer


Theorem phpeqd

Description: Corollary of the Pigeonhole Principle using equality. Strengthening of php expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023) Avoid ax-pow. (Revised by BTernaryTau, 28-Nov-2024)

Ref Expression
Hypotheses phpeqd.1 ( 𝜑𝐴 ∈ Fin )
phpeqd.2 ( 𝜑𝐵𝐴 )
phpeqd.3 ( 𝜑𝐴𝐵 )
Assertion phpeqd ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 phpeqd.1 ( 𝜑𝐴 ∈ Fin )
2 phpeqd.2 ( 𝜑𝐵𝐴 )
3 phpeqd.3 ( 𝜑𝐴𝐵 )
4 2 adantr ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐵𝐴 )
5 simpr ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 = 𝐵 )
6 5 neqcomd ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐵 = 𝐴 )
7 dfpss2 ( 𝐵𝐴 ↔ ( 𝐵𝐴 ∧ ¬ 𝐵 = 𝐴 ) )
8 4 6 7 sylanbrc ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐵𝐴 )
9 php3 ( ( 𝐴 ∈ Fin ∧ 𝐵𝐴 ) → 𝐵𝐴 )
10 1 8 9 syl2an2r ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐵𝐴 )
11 sdomnen ( 𝐵𝐴 → ¬ 𝐵𝐴 )
12 ensymfib ( 𝐴 ∈ Fin → ( 𝐴𝐵𝐵𝐴 ) )
13 12 notbid ( 𝐴 ∈ Fin → ( ¬ 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
14 13 biimpar ( ( 𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ) → ¬ 𝐴𝐵 )
15 1 11 14 syl2an ( ( 𝜑𝐵𝐴 ) → ¬ 𝐴𝐵 )
16 10 15 syldan ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴𝐵 )
17 16 ex ( 𝜑 → ( ¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵 ) )
18 3 17 mt4d ( 𝜑𝐴 = 𝐵 )