Step |
Hyp |
Ref |
Expression |
1 |
|
phpeqd.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
phpeqd.2 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
3 |
|
phpeqd.3 |
⊢ ( 𝜑 → 𝐴 ≈ 𝐵 ) |
4 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 ⊆ 𝐴 ) |
5 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 = 𝐵 ) |
6 |
5
|
neqcomd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐵 = 𝐴 ) |
7 |
|
dfpss2 |
⊢ ( 𝐵 ⊊ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ) |
8 |
4 6 7
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 ⊊ 𝐴 ) |
9 |
|
php3 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
10 |
1 8 9
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 ≺ 𝐴 ) |
11 |
|
sdomnen |
⊢ ( 𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴 ) |
12 |
|
ensymfib |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴 ) ) |
13 |
12
|
notbid |
⊢ ( 𝐴 ∈ Fin → ( ¬ 𝐴 ≈ 𝐵 ↔ ¬ 𝐵 ≈ 𝐴 ) ) |
14 |
13
|
biimpar |
⊢ ( ( 𝐴 ∈ Fin ∧ ¬ 𝐵 ≈ 𝐴 ) → ¬ 𝐴 ≈ 𝐵 ) |
15 |
1 11 14
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝐵 ≺ 𝐴 ) → ¬ 𝐴 ≈ 𝐵 ) |
16 |
10 15
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) |
17 |
16
|
ex |
⊢ ( 𝜑 → ( ¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) |
18 |
3 17
|
mt4d |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |