| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phpeqd.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | phpeqd.2 | ⊢ ( 𝜑  →  𝐵  ⊆  𝐴 ) | 
						
							| 3 |  | phpeqd.3 | ⊢ ( 𝜑  →  𝐴  ≈  𝐵 ) | 
						
							| 4 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  𝐵  ⊆  𝐴 ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  ¬  𝐴  =  𝐵 ) | 
						
							| 6 | 5 | neqcomd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  ¬  𝐵  =  𝐴 ) | 
						
							| 7 |  | dfpss2 | ⊢ ( 𝐵  ⊊  𝐴  ↔  ( 𝐵  ⊆  𝐴  ∧  ¬  𝐵  =  𝐴 ) ) | 
						
							| 8 | 4 6 7 | sylanbrc | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  𝐵  ⊊  𝐴 ) | 
						
							| 9 |  | php3 | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊊  𝐴 )  →  𝐵  ≺  𝐴 ) | 
						
							| 10 | 1 8 9 | syl2an2r | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  𝐵  ≺  𝐴 ) | 
						
							| 11 |  | sdomnen | ⊢ ( 𝐵  ≺  𝐴  →  ¬  𝐵  ≈  𝐴 ) | 
						
							| 12 |  | ensymfib | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  ≈  𝐵  ↔  𝐵  ≈  𝐴 ) ) | 
						
							| 13 | 12 | notbid | ⊢ ( 𝐴  ∈  Fin  →  ( ¬  𝐴  ≈  𝐵  ↔  ¬  𝐵  ≈  𝐴 ) ) | 
						
							| 14 | 13 | biimpar | ⊢ ( ( 𝐴  ∈  Fin  ∧  ¬  𝐵  ≈  𝐴 )  →  ¬  𝐴  ≈  𝐵 ) | 
						
							| 15 | 1 11 14 | syl2an | ⊢ ( ( 𝜑  ∧  𝐵  ≺  𝐴 )  →  ¬  𝐴  ≈  𝐵 ) | 
						
							| 16 | 10 15 | syldan | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  ¬  𝐴  ≈  𝐵 ) | 
						
							| 17 | 16 | ex | ⊢ ( 𝜑  →  ( ¬  𝐴  =  𝐵  →  ¬  𝐴  ≈  𝐵 ) ) | 
						
							| 18 | 3 17 | mt4d | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) |