| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							phpeqdOLD.1 | 
							⊢ ( 𝜑  →  𝐴  ∈  Fin )  | 
						
						
							| 2 | 
							
								
							 | 
							phpeqdOLD.2 | 
							⊢ ( 𝜑  →  𝐵  ⊆  𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							phpeqdOLD.3 | 
							⊢ ( 𝜑  →  𝐴  ≈  𝐵 )  | 
						
						
							| 4 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  𝐵  ⊆  𝐴 )  | 
						
						
							| 5 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  ¬  𝐴  =  𝐵 )  | 
						
						
							| 6 | 
							
								5
							 | 
							neqcomd | 
							⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  ¬  𝐵  =  𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							dfpss2 | 
							⊢ ( 𝐵  ⊊  𝐴  ↔  ( 𝐵  ⊆  𝐴  ∧  ¬  𝐵  =  𝐴 ) )  | 
						
						
							| 8 | 
							
								4 6 7
							 | 
							sylanbrc | 
							⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  𝐵  ⊊  𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							php3 | 
							⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊊  𝐴 )  →  𝐵  ≺  𝐴 )  | 
						
						
							| 10 | 
							
								1 8 9
							 | 
							syl2an2r | 
							⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  𝐵  ≺  𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							sdomnen | 
							⊢ ( 𝐵  ≺  𝐴  →  ¬  𝐵  ≈  𝐴 )  | 
						
						
							| 12 | 
							
								
							 | 
							ensym | 
							⊢ ( 𝐴  ≈  𝐵  →  𝐵  ≈  𝐴 )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							nsyl | 
							⊢ ( 𝐵  ≺  𝐴  →  ¬  𝐴  ≈  𝐵 )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  ¬  𝐴  =  𝐵 )  →  ¬  𝐴  ≈  𝐵 )  | 
						
						
							| 15 | 
							
								14
							 | 
							ex | 
							⊢ ( 𝜑  →  ( ¬  𝐴  =  𝐵  →  ¬  𝐴  ≈  𝐵 ) )  | 
						
						
							| 16 | 
							
								3 15
							 | 
							mt4d | 
							⊢ ( 𝜑  →  𝐴  =  𝐵 )  |