Metamath Proof Explorer


Theorem phphashd

Description: Corollary of the Pigeonhole Principle using equality. Equivalent of phpeqd expressed using the hash function. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses phphashd.1 ( 𝜑𝐴 ∈ Fin )
phphashd.2 ( 𝜑𝐵𝐴 )
phphashd.3 ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) )
Assertion phphashd ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 phphashd.1 ( 𝜑𝐴 ∈ Fin )
2 phphashd.2 ( 𝜑𝐵𝐴 )
3 phphashd.3 ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) )
4 1 2 ssfid ( 𝜑𝐵 ∈ Fin )
5 hashen ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴𝐵 ) )
6 1 4 5 syl2anc ( 𝜑 → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴𝐵 ) )
7 3 6 mpbid ( 𝜑𝐴𝐵 )
8 1 2 7 phpeqd ( 𝜑𝐴 = 𝐵 )