Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The ` # ` (set size) function
phphashd
Metamath Proof Explorer
Description: Corollary of the Pigeonhole Principle using equality. Equivalent of
phpeqd expressed using the hash function. (Contributed by Rohan
Ridenour , 3-Aug-2023)
Ref
Expression
Hypotheses
phphashd.1
⊢ ( 𝜑 → 𝐴 ∈ Fin )
phphashd.2
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 )
phphashd.3
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) )
Assertion
phphashd
⊢ ( 𝜑 → 𝐴 = 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
phphashd.1
⊢ ( 𝜑 → 𝐴 ∈ Fin )
2
phphashd.2
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 )
3
phphashd.3
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) )
4
1 2
ssfid
⊢ ( 𝜑 → 𝐵 ∈ Fin )
5
hashen
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≈ 𝐵 ) )
6
1 4 5
syl2anc
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≈ 𝐵 ) )
7
3 6
mpbid
⊢ ( 𝜑 → 𝐴 ≈ 𝐵 )
8
1 2 7
phpeqd
⊢ ( 𝜑 → 𝐴 = 𝐵 )