Database REAL AND COMPLEX NUMBERS Elementary integer functions The ` # ` (set size) function phphashd  
				
		 
		
			
		 
		Description:   Corollary of the Pigeonhole Principle using equality.  Equivalent of
       phpeqd  expressed using the hash function.  (Contributed by Rohan
       Ridenour , 3-Aug-2023) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						phphashd.1 ⊢  ( 𝜑   →  𝐴   ∈  Fin )  
					
						phphashd.2 ⊢  ( 𝜑   →  𝐵   ⊆  𝐴  )  
					
						phphashd.3 ⊢  ( 𝜑   →  ( ♯ ‘ 𝐴  )  =  ( ♯ ‘ 𝐵  ) )  
				
					Assertion 
					phphashd ⊢   ( 𝜑   →  𝐴   =  𝐵  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							phphashd.1 ⊢  ( 𝜑   →  𝐴   ∈  Fin )  
						
							2 
								
							 
							phphashd.2 ⊢  ( 𝜑   →  𝐵   ⊆  𝐴  )  
						
							3 
								
							 
							phphashd.3 ⊢  ( 𝜑   →  ( ♯ ‘ 𝐴  )  =  ( ♯ ‘ 𝐵  ) )  
						
							4 
								1  2 
							 
							ssfid ⊢  ( 𝜑   →  𝐵   ∈  Fin )  
						
							5 
								
							 
							hashen ⊢  ( ( 𝐴   ∈  Fin  ∧  𝐵   ∈  Fin )  →  ( ( ♯ ‘ 𝐴  )  =  ( ♯ ‘ 𝐵  )  ↔  𝐴   ≈  𝐵  ) )  
						
							6 
								1  4  5 
							 
							syl2anc ⊢  ( 𝜑   →  ( ( ♯ ‘ 𝐴  )  =  ( ♯ ‘ 𝐵  )  ↔  𝐴   ≈  𝐵  ) )  
						
							7 
								3  6 
							 
							mpbid ⊢  ( 𝜑   →  𝐴   ≈  𝐵  )  
						
							8 
								1  2  7 
							 
							phpeqd ⊢  ( 𝜑   →  𝐴   =  𝐵  )