Metamath Proof Explorer


Theorem phphashrd

Description: Corollary of the Pigeonhole Principle using equality. Equivalent of phphashd with reversed arguments. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses phphashrd.1 ( 𝜑𝐵 ∈ Fin )
phphashrd.2 ( 𝜑𝐴𝐵 )
phphashrd.3 ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) )
Assertion phphashrd ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 phphashrd.1 ( 𝜑𝐵 ∈ Fin )
2 phphashrd.2 ( 𝜑𝐴𝐵 )
3 phphashrd.3 ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) )
4 3 eqcomd ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐴 ) )
5 1 2 4 phphashd ( 𝜑𝐵 = 𝐴 )
6 5 eqcomd ( 𝜑𝐴 = 𝐵 )