Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The ` # ` (set size) function
phphashrd
Metamath Proof Explorer
Description: Corollary of the Pigeonhole Principle using equality. Equivalent of
phphashd with reversed arguments. (Contributed by Rohan Ridenour , 3-Aug-2023)
Ref
Expression
Hypotheses
phphashrd.1
⊢ ( 𝜑 → 𝐵 ∈ Fin )
phphashrd.2
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 )
phphashrd.3
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) )
Assertion
phphashrd
⊢ ( 𝜑 → 𝐴 = 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
phphashrd.1
⊢ ( 𝜑 → 𝐵 ∈ Fin )
2
phphashrd.2
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 )
3
phphashrd.3
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) )
4
3
eqcomd
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐴 ) )
5
1 2 4
phphashd
⊢ ( 𝜑 → 𝐵 = 𝐴 )
6
5
eqcomd
⊢ ( 𝜑 → 𝐴 = 𝐵 )